313 lines
9.8 KiB
C++
313 lines
9.8 KiB
C++
/** \file main.cc
|
|
* \author Matthew Gretton-Dann
|
|
* \brief Solves the Partridge problem for user specified size.
|
|
*
|
|
* Copyright 2025, Matthew-Gretton-Dann
|
|
* SPDX: Apache-2.0
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <string_view>
|
|
#include <vector>
|
|
#include <iostream>
|
|
|
|
namespace {
|
|
using size_t = std::uint64_t;
|
|
|
|
/** (x, y) pair storing a position. */
|
|
using Pos = size_t;
|
|
|
|
/** A square - consisting of position of closest corner to origin, and side-length.
|
|
*/
|
|
struct Square {
|
|
/** Construct a square.
|
|
* \param pos Position of closest corner to origin
|
|
* \param length Side length.
|
|
*/
|
|
Square(Pos pos, size_t const length) noexcept : pos_(pos), length_(length) {
|
|
}
|
|
|
|
Square(Square const &other) noexcept = default;
|
|
|
|
Square(Square &&other) noexcept = default;
|
|
|
|
Square &operator=(Square const &other) noexcept = default;
|
|
|
|
Square &operator=(Square &&other) noexcept = default;
|
|
|
|
~Square() noexcept = default;
|
|
|
|
/** Get x co-ordinate of closest corner to origin. */
|
|
[[nodiscard]] auto pos() const noexcept -> Pos { return pos_; }
|
|
|
|
/** Get side length. */
|
|
[[nodiscard]] auto length() const noexcept -> size_t { return length_; }
|
|
|
|
private:
|
|
Pos pos_; ///< Position of corner closest to origin
|
|
size_t length_; ///< Side length
|
|
};
|
|
|
|
/** Structure holding the results.
|
|
*/
|
|
struct Results {
|
|
Results(size_t length, std::vector<Square> squares) : length_(length), squares_(std::move(squares)) {
|
|
}
|
|
|
|
Results(Results const &other) noexcept = delete;
|
|
|
|
Results &operator=(Results const &other) noexcept = delete;
|
|
|
|
Results &operator=(Results &&other) noexcept = default;
|
|
|
|
Results(Results &&other) noexcept = default;
|
|
|
|
~Results() noexcept = default;
|
|
|
|
[[nodiscard]] auto length() const noexcept -> size_t { return length_; }
|
|
|
|
/** Output the grid. */
|
|
auto output() const -> void {
|
|
std::string out(length_ * length_, '.');
|
|
for (auto const &sq: squares_) {
|
|
prettify_sq(out, sq);
|
|
}
|
|
for (size_t idx = 0; idx < length_ * length_; idx += length_) {
|
|
std::cout << std::string_view(out.data() + idx, length_) << '\n';
|
|
}
|
|
}
|
|
|
|
private:
|
|
auto set(std::string &s, size_t x, size_t y, char c) const noexcept -> void {
|
|
assert(x < length_);
|
|
assert(y < length_);
|
|
assert(grid_[x + y * length_] != c);
|
|
s[x + y * length_] = c;
|
|
}
|
|
|
|
[[nodiscard]] auto sq_x(Square const &sq) const noexcept -> size_t { return sq.pos() % length_; }
|
|
[[nodiscard]] auto sq_y(Square const &sq) const noexcept -> size_t { return sq.pos() / length_; }
|
|
|
|
auto prettify_sq(std::string &s, Square const &sq) const noexcept -> void {
|
|
switch (sq.length()) {
|
|
case 1: set(s, sq_x(sq), sq_y(sq), '*');
|
|
break;
|
|
case 2: set(s, sq_x(sq), sq_y(sq), '+');
|
|
set(s, sq_x(sq) + 1, sq_y(sq), '+');
|
|
set(s, sq_x(sq), sq_y(sq) + 1, '+');
|
|
set(s, sq_x(sq) + 1, sq_y(sq) + 1, '+');
|
|
break;
|
|
default: {
|
|
auto n = sq.length();
|
|
set(s, sq_x(sq), sq_y(sq), '+');
|
|
set(s, sq_x(sq) + n - 1, sq_y(sq), '+');
|
|
set(s, sq_x(sq), sq_y(sq) + n - 1, '+');
|
|
set(s, sq_x(sq) + n - 1, sq_y(sq) + n - 1, '+');
|
|
for (size_t i = 1; i < n - 1; ++i) {
|
|
set(s, sq_x(sq) + i, sq_y(sq), '-');
|
|
set(s, sq_x(sq) + i, sq_y(sq) + n - 1, '-');
|
|
set(s, sq_x(sq), sq_y(sq) + i, '|');
|
|
for (size_t j = 1; j < n - 1; ++j) {
|
|
set(s, sq_x(sq) + j, sq_y(sq) + i, ' ');
|
|
}
|
|
set(s, sq_x(sq) + n - 1, sq_y(sq) + i, '|');
|
|
}
|
|
|
|
size_t i = sq_x(sq) + n - 1;
|
|
while (n != 0) {
|
|
set(s, --i, sq_y(sq) + 1, static_cast<char>('0' + static_cast<char>(n % 10)));
|
|
n /= 10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t length_;
|
|
std::vector<Square> squares_;
|
|
};
|
|
|
|
/** An N * N grid of characters. */
|
|
struct Grid {
|
|
// Type to use for the grid contents
|
|
using T = std::int_fast64_t;
|
|
|
|
/** Construct a grid of given side-length. */
|
|
explicit Grid(size_t length) : grid_(length * length, empty), length_(length) {
|
|
}
|
|
|
|
Grid(Grid const &other) = delete;
|
|
|
|
Grid(Grid &&other) noexcept = default;
|
|
|
|
Grid &operator=(Grid const &other) = delete;
|
|
|
|
Grid &operator=(Grid &&other) noexcept = default;
|
|
|
|
~Grid() noexcept = default;
|
|
|
|
/** Get grid length */
|
|
[[nodiscard]] auto end() const noexcept -> size_t { return static_cast<size_t>(grid_.size()); }
|
|
|
|
/** Add a square to the grid. */
|
|
auto add(Square const &sq) noexcept -> void {
|
|
/* One would expect the fastest way to do this would be to have x be the
|
|
* fastest increasing index so we store [pos, pos + 1,..., pos+length, ...]
|
|
* But experimentation tells us this isn't so, and storing
|
|
* [pos, pos + length, ..., pos + 1, ...] is faster!
|
|
*/
|
|
for (auto x = 0; x < sq.length(); ++x) {
|
|
for (auto y = sq.pos(); y < sq.pos() + sq.length() * length_; y += length_) {
|
|
grid_[x + y] = filled;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Clear a square from the grid. */
|
|
auto clear(Square const &sq) noexcept -> void {
|
|
for (auto x = 0; x < sq.length(); ++x) {
|
|
for (auto y = sq.pos(); y < sq.pos() + sq.length() * length_; y += length_) {
|
|
grid_[x + y] = empty;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief Get length of the largest square that fits at \a pos in the grid.
|
|
*/
|
|
[[nodiscard]] auto largest_square(Pos pos, size_t n) const noexcept -> size_t {
|
|
assert(pos < end());
|
|
|
|
/* Because of how we walk through the grid (starting at 0,0 then increasing
|
|
* x followed by y) we can assume that if the position (b, y) is clear
|
|
* (i.e. a '.') then (b, y + i) is clear for all i > 0.
|
|
*
|
|
* This means we only need to look for the first non-clear position along the
|
|
* current row.
|
|
*/
|
|
auto const pos_x = pos % length_;
|
|
auto const pos_y0 = pos - pos_x;
|
|
auto b = pos;
|
|
// Make sure we don't go looking in the next row.
|
|
auto const e = std::min(pos + n, pos_y0 + length_);
|
|
while (b < e) {
|
|
if (grid_[b] != empty) { break; }
|
|
++b;
|
|
}
|
|
// Check that this length fits vertically as well.
|
|
auto const len = b - pos;
|
|
auto const pos_y = pos / length_;
|
|
auto const ye = std::min(pos_y + len, length_);
|
|
return ye - pos_y;
|
|
}
|
|
|
|
/** Get the next position to check starting at pos.
|
|
*
|
|
* Returns grid_.length() if no more positions available.
|
|
*/
|
|
[[nodiscard]] auto next_pos(Pos pos) const noexcept -> Pos {
|
|
auto const b = grid_.begin() + static_cast<std::ptrdiff_t>(pos);
|
|
auto const p = std::find(b, grid_.end(), empty);
|
|
return p - grid_.begin();
|
|
}
|
|
|
|
private:
|
|
std::vector<T> grid_; ///< The grid
|
|
size_t length_; ///< Side length
|
|
|
|
static constexpr char empty = 0; ///< Character used for an empty cell.
|
|
static constexpr char filled = 1; ///< Character used for a filled cell,
|
|
};
|
|
|
|
/** Get the n-th triangular number. */
|
|
auto triangle_num(size_t n) noexcept -> size_t { return (n * (n + 1)) / 2; }
|
|
|
|
/** Vector used to identify the available squares. */
|
|
using Avail = std::vector<size_t>;
|
|
|
|
/** Find a solution to the \a n th Partridge problem.
|
|
*
|
|
* Returns the grid of the solution.
|
|
*/
|
|
auto find_solution(size_t const n) noexcept -> Results {
|
|
/* Implementation is iterative, as opposed to recursive.
|
|
*
|
|
* The recursive implementation is easier to understand - but is
|
|
* slightly slower because of the repeated function calls (and
|
|
* entry/exit).
|
|
*
|
|
* The basic algorithm is to start at the origin of the grid we
|
|
* want to place squares on and iterate over the permutations of
|
|
* available squares until we find one that fits.
|
|
*/
|
|
|
|
// grid is our in-progress grid of square positions.
|
|
auto const length = triangle_num(n);
|
|
Grid grid(length);
|
|
|
|
/* avail_sqs is a vector indexed by square length indicating how many
|
|
* squares are available. Initially set up so that avail_sqs[i] = i.
|
|
*/
|
|
Avail avail_sqs;
|
|
for (auto i = 0; i <= n; ++i) { avail_sqs.push_back(i); }
|
|
|
|
/* sqs is a vector used as a stack of the squares currently placed.
|
|
* We reserve the length we need so as not to have too many allocations.
|
|
*/
|
|
std::vector<Square> sqs;
|
|
sqs.reserve(length);
|
|
|
|
// Start at the origin with a square of longest side length.
|
|
Pos pos = 0;
|
|
size_t idx = n;
|
|
|
|
while (true) {
|
|
/* If the idx is 0 we've looked at all possible square lengths for this
|
|
* position, and they've failed. Pop the last square of the stack, remove
|
|
* it from the grid and try the next smaller size in the same position.
|
|
*/
|
|
if (idx == 0) {
|
|
// No squares on the stack -> failed to find a solution.
|
|
if (sqs.empty()) { break; }
|
|
|
|
auto sq = sqs.back();
|
|
sqs.pop_back();
|
|
grid.clear(sq);
|
|
++avail_sqs[sq.length()];
|
|
pos = sq.pos();
|
|
idx = sq.length() - 1;
|
|
continue;
|
|
}
|
|
|
|
// If there are no squares available of the current size try the next one.
|
|
if (avail_sqs[idx] == 0) {
|
|
--idx;
|
|
continue;
|
|
}
|
|
|
|
/* Place a square of side length idx at pos, push this onto the stack and
|
|
* set up to look at the next position.
|
|
*/
|
|
auto const sq = Square(pos, idx);
|
|
--avail_sqs[idx];
|
|
grid.add(sq);
|
|
sqs.push_back(sq);
|
|
|
|
pos = grid.next_pos(pos + idx);
|
|
idx = grid.largest_square(pos, n);
|
|
|
|
// Have we reached the end? If so success!
|
|
if (pos == grid.end()) { break; }
|
|
}
|
|
|
|
return {length, sqs};
|
|
}
|
|
} // anon namespace
|
|
|
|
int main(int argc, char **argv) {
|
|
auto n = (argc == 1) ? 8 : std::atol(argv[1]);
|
|
auto const grid = find_solution(n);
|
|
std::cout << "Partridge problem " << n << " side length " << grid.length() << '\n';
|
|
grid.output();
|
|
return 0;
|
|
}
|