Files
partridge-cpp/main.cc

313 lines
9.8 KiB
C++

/** \file main.cc
* \author Matthew Gretton-Dann
* \brief Solves the Partridge problem for user specified size.
*
* Copyright 2025, Matthew-Gretton-Dann
* SPDX: Apache-2.0
*/
#include <cassert>
#include <utility>
#include <string_view>
#include <vector>
#include <iostream>
namespace {
using size_t = std::uint64_t;
/** (x, y) pair storing a position. */
using Pos = size_t;
/** A square - consisting of position of closest corner to origin, and side-length.
*/
struct Square {
/** Construct a square.
* \param pos Position of closest corner to origin
* \param length Side length.
*/
Square(Pos pos, size_t const length) noexcept : pos_(pos), length_(length) {
}
Square(Square const &other) noexcept = default;
Square(Square &&other) noexcept = default;
Square &operator=(Square const &other) noexcept = default;
Square &operator=(Square &&other) noexcept = default;
~Square() noexcept = default;
/** Get x co-ordinate of closest corner to origin. */
[[nodiscard]] auto pos() const noexcept -> Pos { return pos_; }
/** Get side length. */
[[nodiscard]] auto length() const noexcept -> size_t { return length_; }
private:
Pos pos_; ///< Position of corner closest to origin
size_t length_; ///< Side length
};
/** Structure holding the results.
*/
struct Results {
Results(size_t length, std::vector<Square> squares) : length_(length), squares_(std::move(squares)) {
}
Results(Results const &other) noexcept = delete;
Results &operator=(Results const &other) noexcept = delete;
Results &operator=(Results &&other) noexcept = default;
Results(Results &&other) noexcept = default;
~Results() noexcept = default;
[[nodiscard]] auto length() const noexcept -> size_t { return length_; }
/** Output the grid. */
auto output() const -> void {
std::string out(length_ * length_, '.');
for (auto const &sq: squares_) {
prettify_sq(out, sq);
}
for (size_t idx = 0; idx < length_ * length_; idx += length_) {
std::cout << std::string_view(out.data() + idx, length_) << '\n';
}
}
private:
auto set(std::string &s, size_t x, size_t y, char c) const noexcept -> void {
assert(x < length_);
assert(y < length_);
assert(grid_[x + y * length_] != c);
s[x + y * length_] = c;
}
[[nodiscard]] auto sq_x(Square const &sq) const noexcept -> size_t { return sq.pos() % length_; }
[[nodiscard]] auto sq_y(Square const &sq) const noexcept -> size_t { return sq.pos() / length_; }
auto prettify_sq(std::string &s, Square const &sq) const noexcept -> void {
switch (sq.length()) {
case 1: set(s, sq_x(sq), sq_y(sq), '*');
break;
case 2: set(s, sq_x(sq), sq_y(sq), '+');
set(s, sq_x(sq) + 1, sq_y(sq), '+');
set(s, sq_x(sq), sq_y(sq) + 1, '+');
set(s, sq_x(sq) + 1, sq_y(sq) + 1, '+');
break;
default: {
auto n = sq.length();
set(s, sq_x(sq), sq_y(sq), '+');
set(s, sq_x(sq) + n - 1, sq_y(sq), '+');
set(s, sq_x(sq), sq_y(sq) + n - 1, '+');
set(s, sq_x(sq) + n - 1, sq_y(sq) + n - 1, '+');
for (size_t i = 1; i < n - 1; ++i) {
set(s, sq_x(sq) + i, sq_y(sq), '-');
set(s, sq_x(sq) + i, sq_y(sq) + n - 1, '-');
set(s, sq_x(sq), sq_y(sq) + i, '|');
for (size_t j = 1; j < n - 1; ++j) {
set(s, sq_x(sq) + j, sq_y(sq) + i, ' ');
}
set(s, sq_x(sq) + n - 1, sq_y(sq) + i, '|');
}
size_t i = sq_x(sq) + n - 1;
while (n != 0) {
set(s, --i, sq_y(sq) + 1, static_cast<char>('0' + static_cast<char>(n % 10)));
n /= 10;
}
}
}
}
size_t length_;
std::vector<Square> squares_;
};
/** An N * N grid of characters. */
struct Grid {
// Type to use for the grid contents
using T = std::int_fast64_t;
/** Construct a grid of given side-length. */
explicit Grid(size_t length) : grid_(length * length, empty), length_(length) {
}
Grid(Grid const &other) = delete;
Grid(Grid &&other) noexcept = default;
Grid &operator=(Grid const &other) = delete;
Grid &operator=(Grid &&other) noexcept = default;
~Grid() noexcept = default;
/** Get grid length */
[[nodiscard]] auto end() const noexcept -> size_t { return static_cast<size_t>(grid_.size()); }
/** Add a square to the grid. */
auto add(Square const &sq) noexcept -> void {
/* One would expect the fastest way to do this would be to have x be the
* fastest increasing index so we store [pos, pos + 1,..., pos+length, ...]
* But experimentation tells us this isn't so, and storing
* [pos, pos + length, ..., pos + 1, ...] is faster!
*/
for (auto x = 0; x < sq.length(); ++x) {
for (auto y = sq.pos(); y < sq.pos() + sq.length() * length_; y += length_) {
grid_[x + y] = filled;
}
}
}
/** Clear a square from the grid. */
auto clear(Square const &sq) noexcept -> void {
for (auto x = 0; x < sq.length(); ++x) {
for (auto y = sq.pos(); y < sq.pos() + sq.length() * length_; y += length_) {
grid_[x + y] = empty;
}
}
}
/** \brief Get length of the largest square that fits at \a pos in the grid.
*/
[[nodiscard]] auto largest_square(Pos pos, size_t n) const noexcept -> size_t {
assert(pos < end());
/* Because of how we walk through the grid (starting at 0,0 then increasing
* x followed by y) we can assume that if the position (b, y) is clear
* (i.e. a '.') then (b, y + i) is clear for all i > 0.
*
* This means we only need to look for the first non-clear position along the
* current row.
*/
auto const pos_x = pos % length_;
auto const pos_y0 = pos - pos_x;
auto b = pos;
// Make sure we don't go looking in the next row.
auto const e = std::min(pos + n, pos_y0 + length_);
while (b < e) {
if (grid_[b] != empty) { break; }
++b;
}
// Check that this length fits vertically as well.
auto const len = b - pos;
auto const pos_y = pos / length_;
auto const ye = std::min(pos_y + len, length_);
return ye - pos_y;
}
/** Get the next position to check starting at pos.
*
* Returns grid_.length() if no more positions available.
*/
[[nodiscard]] auto next_pos(Pos pos) const noexcept -> Pos {
auto const b = grid_.begin() + static_cast<std::ptrdiff_t>(pos);
auto const p = std::find(b, grid_.end(), empty);
return p - grid_.begin();
}
private:
std::vector<T> grid_; ///< The grid
size_t length_; ///< Side length
static constexpr char empty = 0; ///< Character used for an empty cell.
static constexpr char filled = 1; ///< Character used for a filled cell,
};
/** Get the n-th triangular number. */
auto triangle_num(size_t n) noexcept -> size_t { return (n * (n + 1)) / 2; }
/** Vector used to identify the available squares. */
using Avail = std::vector<size_t>;
/** Find a solution to the \a n th Partridge problem.
*
* Returns the grid of the solution.
*/
auto find_solution(size_t const n) noexcept -> Results {
/* Implementation is iterative, as opposed to recursive.
*
* The recursive implementation is easier to understand - but is
* slightly slower because of the repeated function calls (and
* entry/exit).
*
* The basic algorithm is to start at the origin of the grid we
* want to place squares on and iterate over the permutations of
* available squares until we find one that fits.
*/
// grid is our in-progress grid of square positions.
auto const length = triangle_num(n);
Grid grid(length);
/* avail_sqs is a vector indexed by square length indicating how many
* squares are available. Initially set up so that avail_sqs[i] = i.
*/
Avail avail_sqs;
for (auto i = 0; i <= n; ++i) { avail_sqs.push_back(i); }
/* sqs is a vector used as a stack of the squares currently placed.
* We reserve the length we need so as not to have too many allocations.
*/
std::vector<Square> sqs;
sqs.reserve(length);
// Start at the origin with a square of longest side length.
Pos pos = 0;
size_t idx = n;
while (true) {
/* If the idx is 0 we've looked at all possible square lengths for this
* position, and they've failed. Pop the last square of the stack, remove
* it from the grid and try the next smaller size in the same position.
*/
if (idx == 0) {
// No squares on the stack -> failed to find a solution.
if (sqs.empty()) { break; }
auto sq = sqs.back();
sqs.pop_back();
grid.clear(sq);
++avail_sqs[sq.length()];
pos = sq.pos();
idx = sq.length() - 1;
continue;
}
// If there are no squares available of the current size try the next one.
if (avail_sqs[idx] == 0) {
--idx;
continue;
}
/* Place a square of side length idx at pos, push this onto the stack and
* set up to look at the next position.
*/
auto const sq = Square(pos, idx);
--avail_sqs[idx];
grid.add(sq);
sqs.push_back(sq);
pos = grid.next_pos(pos + idx);
idx = grid.largest_square(pos, n);
// Have we reached the end? If so success!
if (pos == grid.end()) { break; }
}
return {length, sqs};
}
} // anon namespace
int main(int argc, char **argv) {
auto n = (argc == 1) ? 8 : std::atol(argv[1]);
auto const grid = find_solution(n);
std::cout << "Partridge problem " << n << " side length " << grid.length() << '\n';
grid.output();
return 0;
}