Solutions for 2022 day 22

This commit is contained in:
2022-12-22 09:52:50 +00:00
parent b6ac5462ff
commit d28540eae1
2 changed files with 476 additions and 0 deletions

200
2022/puzzle-22-01.cc Normal file
View File

@@ -0,0 +1,200 @@
//
// Created by Matthew Gretton-Dann on 16/12/2022.
//
#include <array>
#include <iostream>
#include <map>
#include <numeric>
#include <stdexcept>
#include <utility>
#include <vector>
using Int = std::int64_t;
using UInt = std::uint64_t;
using Point = std::pair<Int, Int>;
using Grid = std::vector<std::string>;
using namespace std::string_literals;
auto find_start(Grid const& grid) -> Point
{
auto const& row0 = grid[0];
for (auto it{row0.begin()}; it != row0.end(); ++it) {
if (*it == '.') {
return Point{it - row0.begin(), 0};
}
}
std::abort();
}
auto turn_right(Point const& direction) -> Point
{
return Point{-direction.second, direction.first};
}
auto turn_left(Point const& direction) -> Point
{
return Point{direction.second, -direction.first};
}
auto read_num(std::string const& str, std::size_t ip) -> std::pair<Int, std::size_t>
{
std::size_t pos{0};
Int const num{std::stoll(str.substr(ip), &pos)};
return {num, ip + pos};
}
auto move_one_step(Grid const& grid, Point const& pos, Point const& direction) -> Point
{
bool again{true};
Point result{pos};
Int const grid_size{static_cast<Int>(grid.size())};
while (again) {
again = false;
Point trial{result.first + direction.first, result.second + direction.second};
// Handle wrap around.
if (trial.second >= grid_size) {
trial.second -= grid_size;
}
else if (trial.second < 0) {
trial.second += grid_size;
}
auto const& row = grid.at(trial.second);
Int const row_size{static_cast<Int>(row.size())};
if (trial.first >= row_size) {
trial.first -= row_size;
}
else if (trial.first < 0) {
trial.first += row_size;
}
if (row[trial.first] == '#') {
trial = pos;
}
result = trial;
if (row[trial.first] == ' ') {
again = true;
}
}
return result;
}
auto direction_char(Point const& direction) -> char
{
if (direction.first == 1) {
assert(direction.second == 0);
return '>';
}
if (direction.second == 1) {
assert(direction.first == 0);
return 'v';
}
if (direction.first == -1) {
assert(direction.second == 0);
return '<';
}
if (direction.second == -1) {
assert(direction.first == 0);
return '^';
}
std::abort();
}
auto move_pos(Grid& grid, Point pos, Point const& direction, Int amt) -> Point
{
for (; amt > 0; --amt) {
Point const next_pos{move_one_step(grid, pos, direction)};
if (next_pos == pos) {
break;
}
pos = next_pos;
grid[pos.second][pos.first] = direction_char(direction);
}
return pos;
}
auto encode_direction(Point const& direction) -> Int
{
if (direction.first == 1) {
assert(direction.second == 0);
return 0;
}
if (direction.second == 1) {
assert(direction.first == 0);
return 1;
}
if (direction.first == -1) {
assert(direction.second == 0);
return 2;
}
if (direction.second == -1) {
assert(direction.first == 0);
return 3;
}
std::abort();
}
auto main() -> int
{
std::string line;
Grid grid;
std::size_t max_row_length{0};
while (std::getline(std::cin, line) && !line.empty()) {
grid.push_back(line);
max_row_length = std::max(max_row_length, line.size());
}
for (auto& row : grid) { row.resize(max_row_length, ' ');};
std::string instructions;
if (!std::getline(std::cin, instructions)) {
std::cerr << "Cannot read instructions.\n";
return EXIT_FAILURE;
}
Point direction{1, 0};
Point pos{find_start(grid)};
std::size_t ip{0};
while (ip < instructions.size()) {
grid[pos.second][pos.first] = direction_char(direction);
if (instructions[ip] == 'R') {
std::cout << "R";
direction = turn_right(direction);
++ip;
}
else if (instructions[ip] == 'L') {
std::cout << "L";
direction = turn_left(direction);
++ip;
}
else {
auto [amt, new_ip] = read_num(instructions, ip);
std::cout << amt;
ip = new_ip;
pos = move_pos(grid, pos, direction, amt);
}
Int const facing{encode_direction(direction)};
std::cout << " Position: " << pos.first << ", " << pos.second << " Facing: " << direction.first
<< ", " << direction.second << " = " << facing << "\n";
}
Int const facing{encode_direction(direction)};
pos.first += 1;
pos.second += 1;
for (auto const& row : grid) {
std::cout << row << "\n";
}
std::cout << "Position: " << pos.first << ", " << pos.second << " Facing: " << direction.first
<< ", " << direction.second << " = " << facing << "\n";
std::cout << "Encoding: " << pos.second * 1000 + pos.first * 4 + facing;
return EXIT_SUCCESS;
}

276
2022/puzzle-22-02.cc Normal file
View File

@@ -0,0 +1,276 @@
//
// Created by Matthew Gretton-Dann on 16/12/2022.
//
#include <array>
#include <iostream>
#include <map>
#include <numeric>
#include <stdexcept>
#include <utility>
#include <vector>
using Int = std::int64_t;
using UInt = std::uint64_t;
using Point = std::pair<Int, Int>;
using Grid = std::vector<std::string>;
using namespace std::string_literals;
auto find_start(Grid const& grid) -> Point
{
auto const& row0 = grid[0];
for (auto it{row0.begin()}; it != row0.end(); ++it) {
if (*it == '.') {
return Point{it - row0.begin(), 0};
}
}
std::abort();
}
auto turn_right(Point const& direction) -> Point
{
return Point{-direction.second, direction.first};
}
auto turn_left(Point const& direction) -> Point
{
return Point{direction.second, -direction.first};
}
auto read_num(std::string const& str, std::size_t ip) -> std::pair<Int, std::size_t>
{
std::size_t pos{0};
Int const num{std::stoll(str.substr(ip), &pos)};
return {num, ip + pos};
}
auto wrap_round(Point const& pos, Point const& direction) -> std::pair<Point, Point>
{
Int constexpr square_size{50};
Point constexpr up{0, -1};
Point constexpr right{1, 0};
Point constexpr down{0, 1};
Point constexpr left{-1, 0};
Int const sx = pos.first < 0 ? -1 : pos.first / square_size;
Int const sy = pos.second < 0 ? -1 : pos.second / square_size;
Int const x = pos.first < 0 ? square_size + pos.first : pos.first % square_size;
Int const y = pos.second < 0 ? square_size + pos.second : pos.second % square_size;
assert(x >= 0);
assert(x < square_size);
assert(y >= 0);
assert(y < square_size);
assert(sx * square_size + x == pos.first);
assert(sy * square_size + y == pos.second);
// Square looks like:
// AB
// C
// DE
// F
if (sx == 1 && sy == -1 && direction == up) {
// A-top -> F-left
return {Point{0, x + square_size * 3}, right};
}
if (sx == 2 && sy == -1 && direction == up) {
// B-top -> F-bottom
return {Point{x, square_size * 3 + square_size - 1}, up};
}
if (sx == 0 && sy == 0 && direction == left) {
// A-left -> D-left, reversed
return {Point{0, square_size * 2 + square_size - 1 - y}, right};
}
if (sx == 3 && sy == 0 && direction == right) {
// B-right -> E-right, reversed
return {Point{square_size + square_size - 1, square_size * 2 + square_size - 1 - y}, left};
}
if (sx == 2 && sy == 1 && direction == down) {
// B-bottom -> C->right
return {Point{square_size + square_size - 1, square_size + x}, left};
}
if (sx == 0 && sy == 1 && direction == left) {
// C->left -> D-top
return {Point{y, square_size * 2}, down};
}
if (sx == 2 && sy == 1 && direction == right) {
// C-right -> B-bottom
return {Point{square_size * 2 + y, square_size - 1}, up};
}
if (sx == 0 && sy == 1 && direction == up) {
// D-top -> C-left
return {Point{square_size, x + square_size}, right};
}
if (sx == -1 && sy == 2 && direction == left) {
// D-left -> A-left, reversed
return {Point{square_size, square_size - 1 - y}, right};
}
if (sx == 2 && sy == 2 && direction == right) {
// E-right -> B-right, reversed
return {Point{square_size * 2 + square_size - 1, square_size - 1 - y}, left};
}
if (sx == 1 && sy == 3 && direction == down) {
// E-down -> F-right
return {Point{square_size - 1, square_size * 3 + x}, left};
}
if (sx == -1 && sy == 3 && direction == left) {
// F-left -> A-top
return {Point{square_size + y, 0}, down};
}
if (sx == 1 && sy == 3 && direction == right) {
// F-right -> E-bottom
return {Point{square_size + y, square_size * 2 + square_size - 1}, up};
}
if (sx == 0 && sy == 4 && direction == down) {
// F-bottom -> B-top
return {Point{square_size * 2 + x, 0}, down};
}
assert(((sx == 1 || sx == 2) && sy == 0) || (sx == 1 && sy == 1) ||
((sx == 0 || sx == 1) && sy == 2) || (sx == 0 && sy == 3));
return {pos, direction};
}
auto move_one_step(Grid const& grid, Point const& pos, Point const& direction)
-> std::pair<Point, Point>
{
Point const trial{pos.first + direction.first, pos.second + direction.second};
auto [wrapped_trial, wrapped_direction] = wrap_round(trial, direction);
assert(wrapped_trial.second >= 0);
assert(wrapped_trial.second < grid.size());
auto const& row = grid.at(wrapped_trial.second);
assert(wrapped_trial.first >= 0);
assert(wrapped_trial.first < row.size());
assert(row.at(wrapped_trial.first) != ' ');
if (row.at(wrapped_trial.first) == '#') {
return {pos, direction};
}
return std::make_pair(wrapped_trial, wrapped_direction);
}
auto direction_char(Point const& direction) -> char
{
if (direction.first == 1) {
assert(direction.second == 0);
return '>';
}
if (direction.second == 1) {
assert(direction.first == 0);
return 'v';
}
if (direction.first == -1) {
assert(direction.second == 0);
return '<';
}
if (direction.second == -1) {
assert(direction.first == 0);
return '^';
}
std::abort();
}
auto move_pos(Grid& grid, Point pos, Point direction, Int amt) -> std::pair<Point, Point>
{
for (; amt > 0; --amt) {
auto const [next_pos, next_direction] = move_one_step(grid, pos, direction);
if (next_pos == pos) {
break;
}
if (direction != next_direction) {
std::cout << " Change of direction: " << pos.first << ", " << pos.second << " -> "
<< next_pos.first << ", " << next_pos.second << ". Direction "
<< direction_char(direction) << " -> " << direction_char(next_direction) << "\n";
}
pos = next_pos;
direction = next_direction;
grid[pos.second][pos.first] = direction_char(direction);
}
return {pos, direction};
}
auto encode_direction(Point const& direction) -> Int
{
if (direction.first == 1) {
assert(direction.second == 0);
return 0;
}
if (direction.second == 1) {
assert(direction.first == 0);
return 1;
}
if (direction.first == -1) {
assert(direction.second == 0);
return 2;
}
if (direction.second == -1) {
assert(direction.first == 0);
return 3;
}
std::abort();
}
auto main() -> int
{
std::string line;
Grid grid;
std::size_t max_row_length{0};
while (std::getline(std::cin, line) && !line.empty()) {
grid.push_back(line);
max_row_length = std::max(max_row_length, line.size());
}
for (auto& row : grid) {
row.resize(max_row_length, ' ');
}
std::string instructions;
if (!std::getline(std::cin, instructions)) {
std::cerr << "Cannot read instructions.\n";
return EXIT_FAILURE;
}
Point direction{1, 0};
Point pos{find_start(grid)};
std::size_t ip{0};
while (ip < instructions.size()) {
grid[pos.second][pos.first] = direction_char(direction);
if (instructions[ip] == 'R') {
std::cout << "R";
direction = turn_right(direction);
++ip;
}
else if (instructions[ip] == 'L') {
std::cout << "L";
direction = turn_left(direction);
++ip;
}
else {
auto [amt, new_ip] = read_num(instructions, ip);
std::cout << amt;
ip = new_ip;
auto [new_pos, new_direction] = move_pos(grid, pos, direction, amt);
pos = new_pos;
direction = new_direction;
}
Int const facing{encode_direction(direction)};
std::cout << " Position: " << pos.first << ", " << pos.second << " Facing: " << direction.first
<< ", " << direction.second << " = " << facing << "\n";
}
Int const facing{encode_direction(direction)};
pos.first += 1;
pos.second += 1;
for (auto const& row : grid) {
std::cout << row << "\n";
}
std::cout << "Position: " << pos.first << ", " << pos.second << " Facing: " << direction.first
<< ", " << direction.second << " = " << facing << "\n";
std::cout << "Encoding: " << pos.second * 1000 + pos.first * 4 + facing;
return EXIT_SUCCESS;
}