242 lines
7.1 KiB
C++
242 lines
7.1 KiB
C++
/** \file main.cc
|
|
* \author Matthew Gretton-Dann
|
|
* \brief Solves the partirige problem for user specified size.
|
|
*
|
|
* Copyright 2025, Matthew-Gretton-Dann
|
|
* SPDX: Apache-2.0
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <string_view>
|
|
#include <vector>
|
|
#include <iostream>
|
|
|
|
/** (x, y) pair storing a position. */
|
|
using Pos = std::pair<int, int>;
|
|
|
|
/** Get x co-ordinate from position */
|
|
auto x(Pos const &p) noexcept -> int { return p.first; }
|
|
|
|
/** Get y co-ordinate from position */
|
|
auto y(Pos const &p) noexcept -> int { return p.second; }
|
|
|
|
/** A square - consisting of position of closest corner to origin, and side-length.
|
|
*/
|
|
struct Square {
|
|
/** Construct a square.
|
|
* \param pos Position of closest corner to origin
|
|
* \param length Side length.
|
|
*/
|
|
Square(Pos const &pos, int const length) noexcept : pos_(pos), length_(length) {
|
|
}
|
|
|
|
Square(Square const &other) noexcept = default;
|
|
|
|
Square(Square &&other) noexcept = default;
|
|
|
|
Square &operator=(Square const &other) noexcept = default;
|
|
|
|
Square &operator=(Square &&other) noexcept = default;
|
|
|
|
~Square() noexcept = default;
|
|
|
|
/** Get x co-ordinate of closest corner to origin. */
|
|
auto x() const noexcept -> int { return ::x(pos_); }
|
|
|
|
/** Get y co-ordinate of closest corner to origin. */
|
|
auto y() const noexcept -> int { return ::y(pos_); }
|
|
|
|
/** Get side length. */
|
|
auto length() const noexcept -> int { return length_; }
|
|
|
|
private:
|
|
Pos pos_; ///< Position of corner closest to origin
|
|
int length_; ///< Side length
|
|
};
|
|
|
|
/** An N * N grid of characters. */
|
|
struct Grid {
|
|
/** Construct a grid of given side-length. */
|
|
Grid(int length) : grid_(length * length, empty), length_(length) {
|
|
}
|
|
|
|
Grid(Grid const &other) = delete;
|
|
|
|
Grid(Grid &&other) noexcept = default;
|
|
|
|
Grid &operator=(Grid const &other) = delete;
|
|
|
|
Grid &operator=(Grid &&other) noexcept = default;
|
|
|
|
~Grid() noexcept = default;
|
|
|
|
/** Get grid length */
|
|
auto length() const noexcept -> int { return length_; }
|
|
|
|
/** Add a square to the grid. */
|
|
auto add(Square const &sq) noexcept -> void {
|
|
switch (sq.length()) {
|
|
case 1: set(sq.x(), sq.y(), '*');
|
|
break;
|
|
case 2: set(sq.x(), sq.y(), '+');
|
|
set(sq.x() + 1, sq.y(), '+');
|
|
set(sq.x(), sq.y() + 1, '+');
|
|
set(sq.x() + 1, sq.y() + 1, '+');
|
|
break;
|
|
default: {
|
|
auto n = sq.length();
|
|
set(sq.x(), sq.y(), '+');
|
|
set(sq.x() + n - 1, sq.y(), '+');
|
|
set(sq.x(), sq.y() + n - 1, '+');
|
|
set(sq.x() + n - 1, sq.y() + n - 1, '+');
|
|
for (int i = 1; i < n - 1; ++i) {
|
|
set(sq.x() + i, sq.y(), '-');
|
|
set(sq.x() + i, sq.y() + n - 1, '-');
|
|
set(sq.x(), sq.y() + i, '|');
|
|
for (int j = 1; j < n - 1; ++j) {
|
|
set(sq.x() + j, sq.y() + i, ' ');
|
|
}
|
|
set(sq.x() + n - 1, sq.y() + i, '|');
|
|
}
|
|
|
|
int i = sq.x() + n - 1;
|
|
while (n != 0) {
|
|
set(--i, sq.y() + 1, '0' + (n % 10));
|
|
n /= 10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Clear a square from the grid. */
|
|
auto clear(Square const &sq) noexcept -> void {
|
|
for (auto i = sq.x(); i < sq.x() + sq.length(); ++i) {
|
|
for (auto j = sq.y(); j < sq.y() + sq.length(); ++j) {
|
|
set(i, j, empty);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Output the grid. */
|
|
auto output() const -> void {
|
|
for (auto idx = 0; idx < length_ * length_; idx += length_) {
|
|
std::cout << std::string_view(grid_.data() + idx, length_) << '\n';
|
|
}
|
|
}
|
|
|
|
/** \brief Get length of the largest square that fits at \a pos in the grid.
|
|
*/
|
|
auto largest_square(Pos const &pos, int n) const noexcept -> int {
|
|
assert(x(pos) < length_);
|
|
assert(y(pos) < length_);
|
|
|
|
/* Because of how we walk through the grid (starting at 0,0 then increasing
|
|
* x followed by y) we can assume that if the position (b, y) is clear
|
|
* (i.e. a '.') then (b, y + i) is clear for all i > 0.
|
|
*
|
|
* This means we only need to look for the first non-clear position along the
|
|
* current row.
|
|
*/
|
|
auto b = x(pos);
|
|
// Make sure we don't go looking in the next row.
|
|
auto e = std::min(x(pos) + n, length_);
|
|
while (b < e) {
|
|
if (grid_[b + y(pos) * length_] != '.') { break; }
|
|
++b;
|
|
}
|
|
// Check that this length fits vertically as well.
|
|
auto len = b - x(pos);
|
|
auto ye = std::min(y(pos) + len, length_);
|
|
return ye - y(pos);
|
|
}
|
|
|
|
/** Get the next position to check. n is the size of the square we just
|
|
* added.
|
|
*/
|
|
auto next_pos(Pos const &pos, int n) const noexcept -> Pos {
|
|
auto const b = grid_.begin() + x(pos) + n + y(pos) * length_;
|
|
auto const p = std::find(b, grid_.end(), empty);
|
|
auto const v = p - grid_.begin();
|
|
return std::make_pair(v % length_, v / length_);
|
|
}
|
|
|
|
private:
|
|
/** Set the grid position (x, y) to the character c.
|
|
*
|
|
* It is an error if (x, y) is already set to c - as that means we have overlapping
|
|
* squares.
|
|
*/
|
|
auto set(int x, int y, char c) noexcept -> void {
|
|
assert(x < length_);
|
|
assert(y < length_);
|
|
assert(grid_[x + y * length_] != c);
|
|
grid_[x + y * length_] = c;
|
|
}
|
|
|
|
std::vector<char> grid_; ///< The grid
|
|
int length_; ///< Side length
|
|
|
|
static const int empty = '.'; ///< Character used for an empty cell.
|
|
};
|
|
|
|
/** Get the n'th triangular number. */
|
|
auto triangle_num(int n) noexcept -> int { return (n * (n + 1)) / 2; }
|
|
|
|
/** Vector used to identify the available squares. */
|
|
using Avail = std::vector<int>;
|
|
|
|
/** Recursive part of solution finder.
|
|
*
|
|
* Fills \a grid with squares from \a avail_sqs, starting at the current
|
|
* position \a pos. \a n is the side-length of the largest square.
|
|
*
|
|
* Returns \c true if a solution is found, \a c false if not.
|
|
*/
|
|
auto find_solution_impl(Grid &grid, int n, Pos const &pos, Avail &avail_sqs) noexcept -> bool {
|
|
if (x(pos) == 0 && y(pos) == grid.length()) { return true; }
|
|
|
|
/* Walk through the possible squares from the largest that will fit down to 0.
|
|
* We don't want to walk up from 1 to the largest because we can show that a
|
|
* 1x1 piece will never fit along an edge (or one in from the edge) - as
|
|
* there is no other 1x1 piece to go alongside it). This means we know the
|
|
* first guess is definitely wrong if we start small.
|
|
*
|
|
* If we know a square of side length N will fit then we know a square of side length
|
|
* N - 1 will fit.
|
|
*/
|
|
for (auto idx = grid.largest_square(pos, n); idx != 0; --idx) {
|
|
if (avail_sqs[idx] == 0) { continue; }
|
|
|
|
auto const sq = Square(pos, idx);
|
|
--avail_sqs[idx];
|
|
grid.add(sq);
|
|
if (find_solution_impl(grid, n, grid.next_pos(pos, idx), avail_sqs)) { return true; }
|
|
++avail_sqs[idx];
|
|
grid.clear(sq);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/** Find a solution to the partridge problem of size n.
|
|
*
|
|
* Returns the solution grid.
|
|
*/
|
|
auto find_solution(int n) -> Grid {
|
|
auto length = triangle_num(n);
|
|
Grid grid(length);
|
|
Avail avail_sqs;
|
|
for (auto i = 0; i <= n; ++i) { avail_sqs.push_back(i); }
|
|
find_solution_impl(grid, n, std::make_pair(0, 0), avail_sqs);
|
|
return grid;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
auto n = (argc == 1) ? 8 : atoi(argv[1]);
|
|
auto grid = find_solution(n);
|
|
std::cout << "Partridge problem " << n << " side length " << grid.length() << '\n';
|
|
grid.output();
|
|
return 0;
|
|
}
|