Files
partridge-cpp/main.cc
Matthew Gretton-Dann 65569982ee Abstract away types and use 64-bit everywhere
We abstract away the types being used from 'int' and 'char'.  The one
exception being for output.

This allows us to experiment to see if using different types can improve
performance.

It turns out it does - and that using 64-bit integers everywhere is a
good idea.
2025-09-03 09:30:33 +02:00

320 lines
9.8 KiB
C++

/** \file main.cc
* \author Matthew Gretton-Dann
* \brief Solves the partirige problem for user specified size.
*
* Copyright 2025, Matthew-Gretton-Dann
* SPDX: Apache-2.0
*/
#include <cassert>
#include <utility>
#include <string_view>
#include <vector>
#include <iostream>
#include <set>
using size_t = std::size_t;
namespace {
/** (x, y) pair storing a position. */
using Pos = std::pair<size_t, size_t>;
/** Get x co-ordinate from position */
auto x(Pos const &p) noexcept -> size_t { return p.first; }
/** Get y co-ordinate from position */
auto y(Pos const &p) noexcept -> size_t { return p.second; }
/** A square - consisting of position of closest corner to origin, and side-length.
*/
struct Square {
/** Construct a square.
* \param pos Position of closest corner to origin
* \param length Side length.
*/
Square(Pos const &pos, size_t const length) noexcept : pos_(pos), length_(length) {
}
Square(Square const &other) noexcept = default;
Square(Square &&other) noexcept = default;
Square &operator=(Square const &other) noexcept = default;
Square &operator=(Square &&other) noexcept = default;
~Square() noexcept = default;
/** Get x co-ordinate of closest corner to origin. */
auto x() const noexcept -> size_t { return ::x(pos_); }
/** Get y co-ordinate of closest corner to origin. */
auto y() const noexcept -> size_t { return ::y(pos_); }
/** Get side length. */
auto length() const noexcept -> size_t { return length_; }
private:
Pos pos_; ///< Position of corner closest to origin
size_t length_; ///< Side length
};
/** Structure holding the results.
*/
struct Results {
Results(size_t length, std::vector<Square> squares) : length_(length), squares_(std::move(squares)) {
}
Results(Results const &other) noexcept = delete;
Results &operator=(Results const &other) noexcept = delete;
Results &operator=(Results &&other) noexcept = default;
Results(Results &&other) noexcept = default;
~Results() noexcept = default;
auto length() const noexcept -> size_t { return length_; }
/** Output the grid. */
auto output() const -> void {
std::string out;
out.resize(length_ * length_);
for (auto const& sq : squares_) {
prettify_sq(out, sq);
}
for (size_t idx = 0; idx < length_ * length_; idx += length_) {
std::cout << std::string_view(out.data() + idx, length_) << '\n';
}
}
private:
auto set(std::string& s, size_t x, size_t y, char c) const noexcept -> void {
assert(x < length_);
assert(y < length_);
assert(grid_[x + y * length_] != c);
s[x + y * length_] = c;
}
auto prettify_sq(std::string& s, Square const &sq) const noexcept -> void {
switch (sq.length()) {
case 1: set(s, sq.x(), sq.y(), '*');
break;
case 2: set(s, sq.x(), sq.y(), '+');
set(s, sq.x() + 1, sq.y(), '+');
set(s, sq.x(), sq.y() + 1, '+');
set(s, sq.x() + 1, sq.y() + 1, '+');
break;
default: {
auto n = sq.length();
set(s, sq.x(), sq.y(), '+');
set(s, sq.x() + n - 1, sq.y(), '+');
set(s, sq.x(), sq.y() + n - 1, '+');
set(s, sq.x() + n - 1, sq.y() + n - 1, '+');
for (size_t i = 1; i < n - 1; ++i) {
set(s, sq.x() + i, sq.y(), '-');
set(s, sq.x() + i, sq.y() + n - 1, '-');
set(s, sq.x(), sq.y() + i, '|');
for (size_t j = 1; j < n - 1; ++j) {
set(s, sq.x() + j, sq.y() + i, ' ');
}
set(s, sq.x() + n - 1, sq.y() + i, '|');
}
size_t i = sq.x() + n - 1;
while (n != 0) {
set(s, --i, sq.y() + 1, '0' + (n % 10));
n /= 10;
}
}
}
}
size_t length_;
std::vector<Square> squares_;
};
/** An N * N grid of characters. */
struct Grid {
// Type to use for the grid contents
using T = std::int_fast64_t;
/** Construct a grid of given side-length. */
Grid(size_t length) : grid_(length * length, empty), length_(length) {
}
Grid(Grid const &other) = delete;
Grid(Grid &&other) noexcept = default;
Grid &operator=(Grid const &other) = delete;
Grid &operator=(Grid &&other) noexcept = default;
~Grid() noexcept = default;
/** Get grid length */
auto length() const noexcept -> size_t { return length_; }
/** Add a square to the grid. */
auto add(Square const &sq) noexcept -> void {
for (auto i = sq.x(); i < sq.x() + sq.length(); ++i) {
for (auto j = sq.y(); j < sq.y() + sq.length(); ++j) {
set(i, j, filled);
}
}
}
/** Clear a square from the grid. */
auto clear(Square const &sq) noexcept -> void {
for (auto i = sq.x(); i < sq.x() + sq.length(); ++i) {
for (auto j = sq.y(); j < sq.y() + sq.length(); ++j) {
set(i, j, empty);
}
}
}
/** \brief Get length of the largest square that fits at \a pos in the grid.
*/
auto largest_square(Pos const &pos, size_t n) const noexcept -> size_t {
assert(x(pos) < length_);
assert(y(pos) < length_);
/* Because of how we walk through the grid (starting at 0,0 then increasing
* x followed by y) we can assume that if the position (b, y) is clear
* (i.e. a '.') then (b, y + i) is clear for all i > 0.
*
* This means we only need to look for the first non-clear position along the
* current row.
*/
auto b = x(pos);
// Make sure we don't go looking in the next row.
auto e = std::min(x(pos) + n, length_);
while (b < e) {
if (grid_[b + y(pos) * length_] != empty) { break; }
++b;
}
// Check that this length fits vertically as well.
auto len = b - x(pos);
auto ye = std::min(y(pos) + len, length_);
return ye - y(pos);
}
/** Get the next position to check. n is the size of the square we just
* added.
*/
auto next_pos(Pos const &pos, size_t n) const noexcept -> Pos {
auto const b = grid_.begin() + x(pos) + n + y(pos) * length_;
auto const p = std::find(b, grid_.end(), empty);
auto const v = p - grid_.begin();
return std::make_pair(v % length_, v / length_);
}
private:
/** Set the grid position (x, y) to the character c.
*
* It is an error if (x, y) is already set to c - as that means we have overlapping
* squares.
*/
auto set(size_t x, size_t y, T c) noexcept -> void {
assert(x < length_);
assert(y < length_);
assert(grid_[x + y * length_] != c);
grid_[x + y * length_] = c;
}
std::vector<T> grid_; ///< The grid
size_t length_; ///< Side length
static constexpr char empty = 0; ///< Character used for an empty cell.
static constexpr char filled = 1; ///< Character used for a filled cell,
};
/** Get the n'th triangular number. */
auto triangle_num(size_t n) noexcept -> size_t { return (n * (n + 1)) / 2; }
/** Vector used to identify the available squares. */
using Avail = std::vector<size_t>;
/** Find a solution to the \a n th Partridge problem.
*
* Returns the grid of the solution.
*/
auto find_solution(size_t const n) noexcept -> Results {
/* Implementation is iterative, as opposed to recursive.
*
* The recursive implementation is easier to understand - but is
* slightly slower because of the repeated function calls (and
* entry/exit).
*
* The basic algorithm is to start at the origin of the grid we
* want to place squares on and iterate over the permutations of
* available squares until we find one that fits.
*/
// grid is our inprogress grid of square positions.
auto const length = triangle_num(n);
Grid grid(length);
/* avail_sqs is a vector indexed by square length indicating how many
* squares are available. Initially set up so that avail_sqs[i] = i.
*/
Avail avail_sqs;
for (auto i = 0; i <= n; ++i) { avail_sqs.push_back(i); }
/* sqs is a vector used as a stack of the squares currently placed.
* We reserve the length we need so as not to have too many allocations.
*/
std::vector<Square> sqs;
sqs.reserve(length);
// Start at the origin with a square of longest side length.
Pos pos{0, 0};
size_t idx = n;
while (true) {
/* If the idx is 0 we've looked at all possible square lengths for this
* position, and they've failed. Pop the last square of the stack, remove
* it from the grid and try the next smaller one in the same position.
*/
if (idx == 0) {
// No squares on the stack -> failed to find a solution.
if (sqs.empty()) { break; }
auto sq = sqs.back();
sqs.pop_back();
grid.clear(sq);
++avail_sqs[sq.length()];
pos = std::make_pair(sq.x(), sq.y());
idx = sq.length() - 1;
continue;
}
// If there are no squares available of the current size try the next one.
if (avail_sqs[idx] == 0) { --idx; continue; }
/* Place a square of side length idx at pos, push this onto the stack and
* set up to look at the next position.
*/
auto const sq = Square(pos, idx);
--avail_sqs[idx];
grid.add(sq);
sqs.push_back(sq);
pos = grid.next_pos(pos, idx);
idx = grid.largest_square(pos, n);
// Have we reached the end? If so success!
if (x(pos) == 0 && y(pos) == grid.length()) { break; }
}
return Results(length, sqs);
}
} // anon namespace
int main(int argc, char **argv) {
auto n = (argc == 1) ? 8 : std::atol(argv[1]);
auto grid = find_solution(n);
std::cout << "Partridge problem " << n << " side length " << grid.length() << '\n';
grid.output();
return 0;
}