As an optimisation we know that if a square with side length N fits in a certain position, then one of side length N - 1 does too. And conversely, if a square of side length N does not fit then one of side length N + 1 does not. So our implementation which asked if every square fitted in a certain position called Grid::fits() too many times, once for each side length. We replace this by a function Grid::largest_square which gives the appropriate side length to start with. Naïvely the optimisation here is that instead of checking whether N squares fit, and so having to do (N * (N + 1)) / 2 comparisons in fits per position, we instead do one scan in largest_square and do at most N comparisons. A performance improvement is also seen in real life.
203 lines
5.6 KiB
C++
203 lines
5.6 KiB
C++
//
|
|
// Created by Matthew Gretton-Dann on 31/08/2025.
|
|
//
|
|
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <string>
|
|
#include <string_view>
|
|
#include <vector>
|
|
#include <iostream>
|
|
|
|
using Pos = std::pair<int, int>;
|
|
|
|
auto x(Pos const &p) noexcept -> int { return p.first; }
|
|
auto y(Pos const &p) noexcept -> int { return p.second; }
|
|
|
|
struct Square {
|
|
Square(Pos const &pos, int length) noexcept : pos_(pos), length_(length) {
|
|
}
|
|
|
|
Square(Square const &other) noexcept = default;
|
|
|
|
Square(Square &&other) noexcept = default;
|
|
|
|
Square &operator=(Square const &other) noexcept = default;
|
|
|
|
Square &operator=(Square &&other) noexcept = default;
|
|
|
|
~Square() noexcept = default;
|
|
|
|
auto x() const noexcept -> int { return ::x(pos_); }
|
|
auto y() const noexcept -> int { return ::y(pos_); }
|
|
auto length() const noexcept -> int { return length_; }
|
|
|
|
Pos pos_;
|
|
int length_;
|
|
};
|
|
|
|
struct OverlappingSquares {
|
|
Pos pos_;
|
|
};
|
|
|
|
struct Grid {
|
|
Grid(int length) : grid_(length * length, '.'), length_(length) {
|
|
}
|
|
|
|
Grid(Grid const &other) = default;
|
|
|
|
Grid(Grid &&other) noexcept = default;
|
|
|
|
Grid &operator=(Grid const &other) = default;
|
|
|
|
Grid &operator=(Grid &&other) noexcept = default;
|
|
|
|
~Grid() noexcept = default;
|
|
|
|
auto length() const noexcept -> int { return length_; }
|
|
|
|
auto set(int x, int y, char c) noexcept -> void {
|
|
assert(x < length_);
|
|
assert(y < length_);
|
|
assert(grid_[x + y * length_] != c);
|
|
grid_[x + y * length_] = c;
|
|
}
|
|
|
|
auto get(int x, int y) const noexcept -> char {
|
|
assert(x < length_);
|
|
assert(y < length_);
|
|
return grid_[x + y * length_];
|
|
}
|
|
|
|
auto add(Square const &sq) -> void {
|
|
switch (sq.length()) {
|
|
case 1: set(sq.x(), sq.y(), '*');
|
|
break;
|
|
case 2: set(sq.x(), sq.y(), '+');
|
|
set(sq.x() + 1, sq.y(), '+');
|
|
set(sq.x(), sq.y() + 1, '+');
|
|
set(sq.x() + 1, sq.y() + 1, '+');
|
|
break;
|
|
default: {
|
|
auto n = sq.length();
|
|
set(sq.x(), sq.y(), '+');
|
|
set(sq.x() + n - 1, sq.y(), '+');
|
|
set(sq.x(), sq.y() + n - 1, '+');
|
|
set(sq.x() + n - 1, sq.y() + n - 1, '+');
|
|
for (int i = 1; i < n - 1; ++i) {
|
|
set(sq.x() + i, sq.y(), '-');
|
|
set(sq.x() + i, sq.y() + n - 1, '-');
|
|
set(sq.x(), sq.y() + i, '|');
|
|
for (int j = 1; j < n - 1; ++j) {
|
|
set(sq.x() + j, sq.y() + i, ' ');
|
|
}
|
|
set(sq.x() + n - 1, sq.y() + i, '|');
|
|
}
|
|
|
|
int i = sq.x() + n - 1;
|
|
while (n != 0) {
|
|
set(--i, sq.y() + 1, '0' + (n % 10));
|
|
n /= 10;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
auto clear(Square const &sq) {
|
|
for (auto i = sq.x(); i < sq.x() + sq.length(); ++i) {
|
|
for (auto j = sq.y(); j < sq.y() + sq.length(); ++j) {
|
|
set(i, j, '.');
|
|
}
|
|
}
|
|
}
|
|
|
|
auto output() const {
|
|
for (auto i = 0; i < length_; ++i) {
|
|
std::cout << grid_.substr(i * length_, length_) << '\n';
|
|
}
|
|
}
|
|
|
|
/** \brief Get length of the largest square that fits at \a pos in the grid.
|
|
*/
|
|
auto largest_square(Pos const &pos, int n) const noexcept -> int {
|
|
assert(x(pos) < length_);
|
|
assert(y(pos) < length_);
|
|
|
|
/* Because of how we walk through the grid (starting at 0,0 then increasing
|
|
* x followed by y) we can assume that if the position (b, y) is clear
|
|
* (i.e. a '.') then (b, y + i) is clear for all i > 0.
|
|
*
|
|
* This means we only need to look for the first non-clear position along the
|
|
* current row.
|
|
*/
|
|
auto b = x(pos);
|
|
// Make sure we don't go looking in the next row.
|
|
auto e = std::min(x(pos) + n, length_);
|
|
while (b < e) {
|
|
if (grid_[b + y(pos) * length_] != '.') { break; }
|
|
++b;
|
|
}
|
|
return b - x(pos);
|
|
}
|
|
|
|
auto next_pos(Pos const &pos) const noexcept -> Pos {
|
|
if (const auto p = x(pos) + 1 + y(pos) * length_; p >= grid_.size()) { return std::make_pair(0, length_); } else {
|
|
const auto next_p = grid_.find('.', p);
|
|
if (next_p == std::string::npos) {
|
|
return std::make_pair(0, length_);
|
|
}
|
|
return std::make_pair(next_p % length_, next_p / length_);
|
|
}
|
|
}
|
|
|
|
std::string grid_;
|
|
int length_;
|
|
};
|
|
|
|
auto triangle_num(int n) { return (n * (n + 1)) / 2; }
|
|
|
|
using Avail = std::vector<int>;
|
|
|
|
auto find_solution_impl(Grid &grid, int n, Pos const &pos, Avail &avail_sqs) -> bool {
|
|
if (x(pos) == 0 && y(pos) == grid.length()) { return true; }
|
|
|
|
/* Walk through the possible squares from the largest that will fit down to 0.
|
|
* We don't want to walk up from 1 to the largest because we can show that a
|
|
* 1x1 piece will never fit along an edge (or one in from the edge) - as
|
|
* there is no other 1x1 piece to go alongside it). This means we know the
|
|
* first guess is definitely wrong if we start small.
|
|
*
|
|
* If we know a square of side length N will fit then we know a square of side length
|
|
* N - 1 will fit.
|
|
*/
|
|
for (auto idx = grid.largest_square(pos, n); idx != 0; --idx) {
|
|
if (avail_sqs[idx] == 0) { continue; }
|
|
|
|
auto const sq = Square(pos, idx);
|
|
--avail_sqs[idx];
|
|
grid.add(sq);
|
|
if (find_solution_impl(grid, n, grid.next_pos(pos), avail_sqs)) { return true; }
|
|
++avail_sqs[idx];
|
|
grid.clear(sq);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
auto find_solution(int n) -> Grid {
|
|
auto length = triangle_num(n);
|
|
Grid grid(length);
|
|
Avail avail_sqs;
|
|
for (auto i = 0; i <= n; ++i) { avail_sqs.push_back(i); }
|
|
find_solution_impl(grid, n, std::make_pair(0, 0), avail_sqs);
|
|
return grid;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
auto n = (argc == 1) ? 8 : atoi(argv[1]);
|
|
auto grid = find_solution(n);
|
|
std::cout << "Partridge problem " << n << " side length " << grid.length() << '\n';
|
|
grid.output();
|
|
return 0;
|
|
}
|