/** \file main.cc * \author Matthew Gretton-Dann * \brief Solves the partirige problem for user specified size. * * Copyright 2025, Matthew-Gretton-Dann * SPDX: Apache-2.0 */ #include #include #include #include #include #include namespace { /** (x, y) pair storing a position. */ using Pos = std::pair; /** Get x co-ordinate from position */ auto x(Pos const &p) noexcept -> int { return p.first; } /** Get y co-ordinate from position */ auto y(Pos const &p) noexcept -> int { return p.second; } /** A square - consisting of position of closest corner to origin, and side-length. */ struct Square { /** Construct a square. * \param pos Position of closest corner to origin * \param length Side length. */ Square(Pos const &pos, int const length) noexcept : pos_(pos), length_(length) { } Square(Square const &other) noexcept = default; Square(Square &&other) noexcept = default; Square &operator=(Square const &other) noexcept = default; Square &operator=(Square &&other) noexcept = default; ~Square() noexcept = default; /** Get x co-ordinate of closest corner to origin. */ auto x() const noexcept -> int { return ::x(pos_); } /** Get y co-ordinate of closest corner to origin. */ auto y() const noexcept -> int { return ::y(pos_); } /** Get side length. */ auto length() const noexcept -> int { return length_; } private: Pos pos_; ///< Position of corner closest to origin int length_; ///< Side length }; /** Structure holding the results. */ struct Results { Results(int length, std::vector squares) : length_(length), squares_(std::move(squares)) { } Results(Results const &other) noexcept = delete; Results &operator=(Results const &other) noexcept = delete; Results &operator=(Results &&other) noexcept = default; Results(Results &&other) noexcept = default; ~Results() noexcept = default; auto length() const noexcept -> int { return length_; } /** Output the grid. */ auto output() const -> void { std::string out; out.resize(length_ * length_); for (auto const& sq : squares_) { prettify_sq(out, sq); } for (auto idx = 0; idx < length_ * length_; idx += length_) { std::cout << std::string_view(out.data() + idx, length_) << '\n'; } } private: auto set(std::string& s, int x, int y, char c) const noexcept -> void { assert(x < length_); assert(y < length_); assert(grid_[x + y * length_] != c); s[x + y * length_] = c; } auto prettify_sq(std::string& s, Square const &sq) const noexcept -> void { switch (sq.length()) { case 1: set(s, sq.x(), sq.y(), '*'); break; case 2: set(s, sq.x(), sq.y(), '+'); set(s, sq.x() + 1, sq.y(), '+'); set(s, sq.x(), sq.y() + 1, '+'); set(s, sq.x() + 1, sq.y() + 1, '+'); break; default: { auto n = sq.length(); set(s, sq.x(), sq.y(), '+'); set(s, sq.x() + n - 1, sq.y(), '+'); set(s, sq.x(), sq.y() + n - 1, '+'); set(s, sq.x() + n - 1, sq.y() + n - 1, '+'); for (int i = 1; i < n - 1; ++i) { set(s, sq.x() + i, sq.y(), '-'); set(s, sq.x() + i, sq.y() + n - 1, '-'); set(s, sq.x(), sq.y() + i, '|'); for (int j = 1; j < n - 1; ++j) { set(s, sq.x() + j, sq.y() + i, ' '); } set(s, sq.x() + n - 1, sq.y() + i, '|'); } int i = sq.x() + n - 1; while (n != 0) { set(s, --i, sq.y() + 1, '0' + (n % 10)); n /= 10; } } } } int length_; std::vector squares_; }; /** An N * N grid of characters. */ struct Grid { /** Construct a grid of given side-length. */ Grid(int length) : grid_(length * length, empty), length_(length) { } Grid(Grid const &other) = delete; Grid(Grid &&other) noexcept = default; Grid &operator=(Grid const &other) = delete; Grid &operator=(Grid &&other) noexcept = default; ~Grid() noexcept = default; /** Get grid length */ auto length() const noexcept -> int { return length_; } /** Add a square to the grid. */ auto add(Square const &sq) noexcept -> void { for (auto i = sq.x(); i < sq.x() + sq.length(); ++i) { for (auto j = sq.y(); j < sq.y() + sq.length(); ++j) { set(i, j, sq.length()); } } } /** Clear a square from the grid. */ auto clear(Square const &sq) noexcept -> void { for (auto i = sq.x(); i < sq.x() + sq.length(); ++i) { for (auto j = sq.y(); j < sq.y() + sq.length(); ++j) { set(i, j, empty); } } } /** \brief Get length of the largest square that fits at \a pos in the grid. */ auto largest_square(Pos const &pos, int n) const noexcept -> int { assert(x(pos) < length_); assert(y(pos) < length_); /* Because of how we walk through the grid (starting at 0,0 then increasing * x followed by y) we can assume that if the position (b, y) is clear * (i.e. a '.') then (b, y + i) is clear for all i > 0. * * This means we only need to look for the first non-clear position along the * current row. */ auto b = x(pos); // Make sure we don't go looking in the next row. auto e = std::min(x(pos) + n, length_); while (b < e) { if (grid_[b + y(pos) * length_] != '.') { break; } ++b; } // Check that this length fits vertically as well. auto len = b - x(pos); auto ye = std::min(y(pos) + len, length_); return ye - y(pos); } /** Get the next position to check. n is the size of the square we just * added. */ auto next_pos(Pos const &pos, int n) const noexcept -> Pos { auto const b = grid_.begin() + x(pos) + n + y(pos) * length_; auto const p = std::find(b, grid_.end(), empty); auto const v = p - grid_.begin(); return std::make_pair(v % length_, v / length_); } private: /** Set the grid position (x, y) to the character c. * * It is an error if (x, y) is already set to c - as that means we have overlapping * squares. */ auto set(int x, int y, char c) noexcept -> void { assert(x < length_); assert(y < length_); assert(grid_[x + y * length_] != c); grid_[x + y * length_] = c; } std::vector grid_; ///< The grid int length_; ///< Side length static constexpr char empty = '.'; ///< Character used for an empty cell. }; /** Get the n'th triangular number. */ auto triangle_num(int n) noexcept -> int { return (n * (n + 1)) / 2; } /** Vector used to identify the available squares. */ using Avail = std::vector; /** Find a solution to the \a n th Partridge problem. * * Returns the grid of the solution. */ auto find_solution(int const n) noexcept -> Results { /* Implementation is iterative, as opposed to recursive. * * The recursive implementation is easier to understand - but is * slightly slower because of the repeated function calls (and * entry/exit). * * The basic algorithm is to start at the origin of the grid we * want to place squares on and iterate over the permutations of * available squares until we find one that fits. */ // grid is our inprogress grid of square positions. auto const length = triangle_num(n); Grid grid(length); /* avail_sqs is a vector indexed by square length indicating how many * squares are available. Initially set up so that avail_sqs[i] = i. */ Avail avail_sqs; for (auto i = 0; i <= n; ++i) { avail_sqs.push_back(i); } /* sqs is a vector used as a stack of the squares currently placed. * We reserve the length we need so as not to have too many allocations. */ std::vector sqs; sqs.reserve(length); // Start at the origin with a square of longest side length. Pos pos{0, 0}; int idx = n; while (true) { /* If the idx is 0 we've looked at all possible square lengths for this * position, and they've failed. Pop the last square of the stack, remove * it from the grid and try the next smaller one in the same position. */ if (idx == 0) { // No squares on the stack -> failed to find a solution. if (sqs.empty()) { break; } auto sq = sqs.back(); sqs.pop_back(); grid.clear(sq); ++avail_sqs[sq.length()]; pos = std::make_pair(sq.x(), sq.y()); idx = sq.length() - 1; continue; } // If there are no squares available of the current size try the next one. if (avail_sqs[idx] == 0) { --idx; continue; } /* Place a square of side length idx at pos, push this onto the stack and * set up to look at the next position. */ auto const sq = Square(pos, idx); --avail_sqs[idx]; grid.add(sq); sqs.push_back(sq); pos = grid.next_pos(pos, idx); idx = grid.largest_square(pos, n); // Have we reached the end? If so success! if (x(pos) == 0 && y(pos) == grid.length()) { break; } } return Results(length, sqs); } } // anon namespace int main(int argc, char **argv) { auto n = (argc == 1) ? 8 : atoi(argv[1]); auto grid = find_solution(n); std::cout << "Partridge problem " << n << " side length " << grid.length() << '\n'; grid.output(); return 0; }