module IntMap = Map.Make (Int) (** [parse_robot s] returns a robot description [((x, y), (dx, dy))] parsed from the string [s]. *) let parse_robot s = let re = Str.regexp {|p=\(-?[0-9]+\),\(-?[0-9]+\) v=\(-?[0-9]+\),\(-?[0-9]+\)|} in let _ = Str.search_forward re s 0 in ( ( int_of_string (Str.matched_group 1 s), int_of_string (Str.matched_group 2 s) ), ( int_of_string (Str.matched_group 3 s), int_of_string (Str.matched_group 4 s) ) ) (** [robots_of_file fname] returns a list of robots parsed from the file [fname]. *) let robots_of_file fname = Aoc.strings_of_file fname |> List.map parse_robot (** Grid width *) let width = 101 (** Grid height *) let height = 103 (** Number of seconds to run part 1 for*) let secs1 = 100 (** Maximum number of seconds to run part 2 for *) let secs2 = 1000000 (** [normalize_velocity robot] returns a robot where the velocity has been normalized to be non-negative in both directions. *) let normalize_velocity (p, (dx, dy)) = (p, ((dx + width) mod width, (dy + height) mod height)) (** [calc_pos_after secs r] returns the [(x, y)] position of a robot after [secs] seconds. *) let calc_pos_after secs ((x, y), (dx, dy)) = let x' = (x + (secs * dx)) mod width in let y' = (y + (secs * dy)) mod height in (x', y') (** [in_a_quadrant pos] returns true if [pos] is in a quadrant. *) let in_a_quadrant (x, y) = x <> width / 2 && y <> height / 2 (** [update_count n] Is used by [IntMap.update] to increment a count. *) let update_count = function None -> Some 1 | Some x -> Some (x + 1) (** [get_quadrant p] returns the quadrant ID that the position [p] is in. *) let get_quadrant (x, y) = if x < width / 2 && y < height / 2 then 1 else if x > width / 2 && y < height / 2 then 2 else if x < width / 2 && y > height / 2 then 4 else if x > width / 2 && y > height / 2 then 3 else failwith "get_quadrant" (** [quadrant_counts map p] updates the quadrant count map [map] with [p]. Keys to [map] are quadrant IDs, and the values are the number of robots in that quadrant. *) let quadrant_counts map p = let idx = get_quadrant p in IntMap.update idx update_count map (** [print_locs lst] prints the grid layout of the robots given in list. *) let print_locs lst = let a = Array.make_matrix height width '.' in let rec impl = function | [] -> () | (x, y) :: t -> if a.(y).(x) = '.' then a.(y).(x) <- '1' else a.(y).(x) <- char_of_int (1 + int_of_char a.(y).(x)); impl t in impl lst; Array.iter (fun r -> Array.iter print_char r; print_newline ()) a (** [part1 robots] solves part1 for the list [robots]. *) let part1 robots = let counts = robots |> List.map normalize_velocity |> List.map (calc_pos_after secs1) |> List.filter in_a_quadrant |> List.fold_left quadrant_counts IntMap.empty in IntMap.fold (fun _ v acc -> acc * v) counts 1 (** [find_tree max_n lst] tries to find the Christmas tree picture by iterating through the various steps robots move in. Returns the number of iterations before finding the tree. *) let find_tree max_n lst = (* We assume that the picture will occur when every robot is in a unique location. *) let num_robots = List.length lst in let rec impl n = if n > max_n then failwith "None found" else let poses = List.map (calc_pos_after n) lst in (* If every tree is in a unique location then sort_uniq will not remove any elements from the list. *) if List.length (List.sort_uniq Aoc.IntPair.compare poses) = num_robots then ( print_locs poses; n) else impl (n + 1) in impl 0 (** [part2 robots] solves part 2 for the list of robots. *) let part2 robots = let robots = List.map normalize_velocity robots in find_tree secs2 robots let _ = Aoc.main robots_of_file [ (string_of_int, part1); (string_of_int, part2) ]