Tidy up 2024 day 14 code.

This commit is contained in:
2024-12-14 09:00:00 +00:00
parent 2afe323aec
commit 499243c6eb

View File

@@ -1,5 +1,7 @@
module IntMap = Map.Make (Int) module IntMap = Map.Make (Int)
(** [parse_robot s] returns a robot description [((x, y), (dx, dy))] parsed from
the string [s]. *)
let parse_robot s = let parse_robot s =
let re = let re =
Str.regexp {|p=\(-?[0-9]+\),\(-?[0-9]+\) v=\(-?[0-9]+\),\(-?[0-9]+\)|} Str.regexp {|p=\(-?[0-9]+\),\(-?[0-9]+\) v=\(-?[0-9]+\),\(-?[0-9]+\)|}
@@ -10,23 +12,41 @@ let parse_robot s =
( int_of_string (Str.matched_group 3 s), ( int_of_string (Str.matched_group 3 s),
int_of_string (Str.matched_group 4 s) ) ) int_of_string (Str.matched_group 4 s) ) )
let parse_robots = List.map parse_robot (** [robots_of_file fname] returns a list of robots parsed from the file
let robots_of_file fname = Aoc.strings_of_file fname |> parse_robots [fname]. *)
let width = 101 let robots_of_file fname = Aoc.strings_of_file fname |> List.map parse_robot
let height = 103
let secs = 100
(** Grid width *)
let width = 101
(** Grid height *)
let height = 103
(** Number of seconds to run part 1 for*)
let secs1 = 100
(** Maximum number of seconds to run part 2 for *)
let secs2 = 1000000
(** [normalize_velocity robot] returns a robot where the velocity has been
normalized to be non-negative in both directions. *)
let normalize_velocity (p, (dx, dy)) = let normalize_velocity (p, (dx, dy)) =
(p, ((dx + width) mod width, (dy + height) mod height)) (p, ((dx + width) mod width, (dy + height) mod height))
(** [calc_pos_after secs r] returns the [(x, y)] position of a robot after
[secs] seconds. *)
let calc_pos_after secs ((x, y), (dx, dy)) = let calc_pos_after secs ((x, y), (dx, dy)) =
let x' = (x + (secs * dx)) mod width in let x' = (x + (secs * dx)) mod width in
let y' = (y + (secs * dy)) mod height in let y' = (y + (secs * dy)) mod height in
(x', y') (x', y')
(** [in_a_quadrant pos] returns true if [pos] is in a quadrant. *)
let in_a_quadrant (x, y) = x <> width / 2 && y <> height / 2 let in_a_quadrant (x, y) = x <> width / 2 && y <> height / 2
(** [update_count n] Is used by [IntMap.update] to increment a count. *)
let update_count = function None -> Some 1 | Some x -> Some (x + 1) let update_count = function None -> Some 1 | Some x -> Some (x + 1)
(** [get_quadrant p] returns the quadrant ID that the position [p] is in. *)
let get_quadrant (x, y) = let get_quadrant (x, y) =
if x < width / 2 && y < height / 2 then 1 if x < width / 2 && y < height / 2 then 1
else if x > width / 2 && y < height / 2 then 2 else if x > width / 2 && y < height / 2 then 2
@@ -34,10 +54,14 @@ let get_quadrant (x, y) =
else if x > width / 2 && y > height / 2 then 3 else if x > width / 2 && y > height / 2 then 3
else failwith "get_quadrant" else failwith "get_quadrant"
let loc_counts map p = (** [quadrant_counts map p] updates the quadrant count map [map] with [p]. Keys
to [map] are quadrant IDs, and the values are the number of robots in that
quadrant. *)
let quadrant_counts map p =
let idx = get_quadrant p in let idx = get_quadrant p in
IntMap.update idx update_count map IntMap.update idx update_count map
(** [print_locs lst] prints the grid layout of the robots given in list. *)
let print_locs lst = let print_locs lst =
let a = Array.make_matrix height width '.' in let a = Array.make_matrix height width '.' in
let rec impl = function let rec impl = function
@@ -54,22 +78,30 @@ let print_locs lst =
print_newline ()) print_newline ())
a a
(** [part1 robots] solves part1 for the list [robots]. *)
let part1 robots = let part1 robots =
let counts = let counts =
robots robots
|> List.map normalize_velocity |> List.map normalize_velocity
|> List.map (calc_pos_after secs) |> List.map (calc_pos_after secs1)
|> List.filter in_a_quadrant |> List.filter in_a_quadrant
|> List.fold_left loc_counts IntMap.empty |> List.fold_left quadrant_counts IntMap.empty
in in
IntMap.fold (fun _ v acc -> acc * v) counts 1 IntMap.fold (fun _ v acc -> acc * v) counts 1
(** [find_tree max_n lst] tries to find the Christmas tree picture by iterating
through the various steps robots move in. Returns the number of iterations
before finding the tree. *)
let find_tree max_n lst = let find_tree max_n lst =
(* We assume that the picture will occur when every robot is in a unique
location. *)
let num_robots = List.length lst in let num_robots = List.length lst in
let rec impl n = let rec impl n =
if n > max_n then failwith "None found" if n > max_n then failwith "None found"
else else
let poses = List.map (calc_pos_after n) lst in let poses = List.map (calc_pos_after n) lst in
(* If every tree is in a unique location then sort_uniq will not remove
any elements from the list. *)
if List.length (List.sort_uniq Aoc.IntPair.compare poses) = num_robots if List.length (List.sort_uniq Aoc.IntPair.compare poses) = num_robots
then ( then (
print_locs poses; print_locs poses;
@@ -78,9 +110,10 @@ let find_tree max_n lst =
in in
impl 0 impl 0
(** [part2 robots] solves part 2 for the list of robots. *)
let part2 robots = let part2 robots =
let robots = List.map normalize_velocity robots in let robots = List.map normalize_velocity robots in
find_tree 100000 robots find_tree secs2 robots
let _ = let _ =
Aoc.main robots_of_file [ (string_of_int, part1); (string_of_int, part2) ] Aoc.main robots_of_file [ (string_of_int, part1); (string_of_int, part2) ]