Performant solution to 2024 day 11.
We notice that we're repeating calculations at each step, so use a map to ensure we do each stone ID once per step.
This commit is contained in:
@@ -1,47 +1,53 @@
|
||||
module IntMap = Map.Make (Int)
|
||||
|
||||
let load_file fname =
|
||||
match In_channel.with_open_text fname In_channel.input_line with
|
||||
| Some x -> x
|
||||
| None -> failwith "load_file"
|
||||
|
||||
let log10i i =
|
||||
let rec impl acc = function 0 -> acc | x -> impl (acc + 1) (x / 10) in
|
||||
assert (i > 0);
|
||||
impl ~-1 i
|
||||
|
||||
let digits10 i = 1 + log10i i
|
||||
|
||||
(** [pow10 n] returns [10] raised to the [n]th power. [n] must be non-negative.
|
||||
*)
|
||||
let pow10 n =
|
||||
let rec impl acc = function 0 -> acc | x -> impl (acc * 10) (x - 1) in
|
||||
assert (n >= 0);
|
||||
impl 1 n
|
||||
|
||||
let rec apply_n n fn arg = if n <= 0 then arg else apply_n (n - 1) fn (fn arg)
|
||||
let update_count n = function None -> Some n | Some x -> Some (x + n)
|
||||
|
||||
(*
|
||||
let print_int_list lst =
|
||||
List.iter
|
||||
(fun i ->
|
||||
print_int i;
|
||||
print_char ' ')
|
||||
lst;
|
||||
print_newline ();
|
||||
()
|
||||
*)
|
||||
let calc n input =
|
||||
let rec step_rec acc = function
|
||||
let map_of_ints =
|
||||
let rec impl acc = function
|
||||
| [] -> acc
|
||||
| 0 :: t -> step_rec (1 :: acc) t
|
||||
| x :: t when digits10 x mod 2 = 0 ->
|
||||
let pow = pow10 (digits10 x / 2) in
|
||||
let left = x / pow in
|
||||
let right = x mod pow in
|
||||
step_rec (right :: left :: acc) t
|
||||
| x :: t -> step_rec ((x * 2024) :: acc) t
|
||||
| h :: t -> impl (IntMap.update h (update_count 1) acc) t
|
||||
in
|
||||
apply_n n (step_rec []) input
|
||||
impl IntMap.empty
|
||||
|
||||
let part1 str = Aoc.ints_of_string str |> calc 25 |> List.length
|
||||
let part2 str = Aoc.ints_of_string str |> calc 75 |> List.length
|
||||
let _ = Aoc.main load_file [ (string_of_int, part1); (string_of_int, part2) ]
|
||||
(** [calc_blink_rec acc lst] returns an updated map based off [acc] with the
|
||||
result of apply a blink step to the stones in [lst]. Entries in [lst] are
|
||||
pairs of [(stone id, count)]. [acc] and the resulting map have keys which
|
||||
are stone id, and values which are count. *)
|
||||
let rec calc_blink_rec acc = function
|
||||
| [] -> acc
|
||||
| (0, n) :: t -> calc_blink_rec (IntMap.update 1 (update_count n) acc) t
|
||||
| (x, n) :: t when Aoc.digits10 x mod 2 = 0 ->
|
||||
let pow = Aoc.pow10 (Aoc.digits10 x / 2) in
|
||||
let acc = IntMap.update (x / pow) (update_count n) acc in
|
||||
let acc = IntMap.update (x mod pow) (update_count n) acc in
|
||||
calc_blink_rec acc t
|
||||
| (x, n) :: t ->
|
||||
calc_blink_rec (IntMap.update (x * 2024) (update_count n) acc) t
|
||||
|
||||
(** [calc_blink map] calculates how a collection of stones changes in a blink.
|
||||
[map] is a map with key of stone ID, and value number of times that stone
|
||||
appears. The result is a map with similar key, value pairs.
|
||||
|
||||
This improves performance because we find that the transformation stones go
|
||||
through ends up producing repeated numbers. e.g.: 0 -> 1 -> 2024 -> 20 24 ->
|
||||
2 0 2 4 which has two 2s in it.
|
||||
|
||||
We also note that despite the problem description saying stones stay in
|
||||
order, the result we are asked for (number of stones) does not require them
|
||||
to be in order. *)
|
||||
let calc_blink map = IntMap.to_list map |> calc_blink_rec IntMap.empty
|
||||
|
||||
(** [part n str] returns the number of stones after [n] blinks, given an initial
|
||||
string [str] of space seperated stone IDs. *)
|
||||
let part n str =
|
||||
let map = Aoc.ints_of_string str |> map_of_ints |> apply_n n calc_blink in
|
||||
IntMap.fold (fun _ v acc -> v + acc) map 0
|
||||
|
||||
let _ =
|
||||
Aoc.main load_file [ (string_of_int, part 25); (string_of_int, part 75) ]
|
||||
|
Reference in New Issue
Block a user