161 lines
5.4 KiB
C++
161 lines
5.4 KiB
C++
//
|
|
// Created by mgretton on 10/01/2022.
|
|
//
|
|
|
|
#ifndef ADVENT_OF_CODE_GRAPH_UTILS_H
|
|
#define ADVENT_OF_CODE_GRAPH_UTILS_H
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <numeric>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
/** \brief Implement Dijkstra's algorithm.
|
|
*
|
|
* @tparam Cost Cost type
|
|
* @tparam Node Node class
|
|
* @tparam TransitionManager Class type that manages state transitions
|
|
* @tparam FinishedFn Function type to call to test whether a node matches finished state
|
|
* @param initial Initial node
|
|
* @param initial_cost Cost of initial node
|
|
* @param transition_manager Object to manage state transitions
|
|
* @return Node, Cost pair indicating success. On failure default node with
|
|
* maximum cost is returned.
|
|
*
|
|
* \a Cost Must be a numeric type. \a Node must be a class which is default constructable, be less
|
|
* than comparable.
|
|
*
|
|
* \a transition_manager must be an object with the following public interfaces:
|
|
* \code
|
|
* auto is_finished(Node const& node) -> bool;
|
|
*
|
|
* template <typename Inserter>
|
|
* void generate_children(Node const& node, Inserter inserter);
|
|
* \endcode
|
|
*
|
|
* The \c generate_children() method is called whenever we examine the node \c node, and should
|
|
* call \c inserter(next_node, cost_delta) for every node directly reachable from \c node. Where
|
|
* \c next_node is the next node to visit and \c cost_delta is the incremental cost to visit the new
|
|
* node. \c inserter should be called for all possible nodes that are visitable, it will ensure
|
|
* that duplicates are managed correctly/
|
|
*
|
|
* The \c is_finished() method should return true if the given node is in a finished state.
|
|
*/
|
|
template<typename Cost, typename Node, typename TransitionManager>
|
|
auto dijkstra(Node const& initial, Cost initial_cost, TransitionManager transition_manager)
|
|
-> std::pair<Node, Cost>
|
|
{
|
|
/** Helper struct to order node pointers. */
|
|
struct NodePCmp
|
|
{
|
|
auto operator()(Node const* lhs, Node const* rhs) const noexcept -> bool
|
|
{
|
|
if (lhs == nullptr && rhs != nullptr) {
|
|
return true;
|
|
}
|
|
if (rhs == nullptr) {
|
|
return false;
|
|
}
|
|
return *lhs < *rhs;
|
|
}
|
|
|
|
auto operator()(Node const* lhs, Node const& rhs) const noexcept -> bool
|
|
{
|
|
if (lhs == nullptr) {
|
|
return true;
|
|
}
|
|
return *lhs < rhs;
|
|
}
|
|
|
|
auto operator()(Node const& lhs, Node const* rhs) const noexcept -> bool
|
|
{
|
|
if (rhs == nullptr) {
|
|
return false;
|
|
}
|
|
return lhs < *rhs;
|
|
}
|
|
};
|
|
|
|
/* We maintain two maps - one from node to cost and the other from cost to nodes. */
|
|
/** \c nodes maintains a map of all the nodes we've visited or want to visit. Nodes that cost
|
|
* less than the current cost at the front of costs have been visited. The rest haven't.
|
|
*/
|
|
std::map<Node const*, Cost, NodePCmp> nodes;
|
|
/** \c costs maintains a map of costs to the nodes that cost that much to visit. */
|
|
std::map<Cost, std::unordered_set<Node const*>> costs;
|
|
Cost current_cost{initial_cost};
|
|
Node const* current_node{new Node(initial)};
|
|
nodes.insert({current_node, current_cost});
|
|
costs.insert({current_cost, {current_node}});
|
|
|
|
/* Helper lambda to clean up after ourselves. */
|
|
auto cleanup = [](auto& nodes) {
|
|
for (auto const& it : nodes) {
|
|
delete it.first;
|
|
}
|
|
};
|
|
|
|
/* Helper lambda to insert into the maps. */
|
|
auto inserter = [&costs, &nodes, ¤t_cost](Node const& node, Cost cost) {
|
|
cost += current_cost;
|
|
auto node_it{nodes.find(&node)};
|
|
/* Skip inserting nodes we've already visited, or that would cost more to visit. */
|
|
if (node_it != nodes.end() && node_it->second <= cost) {
|
|
return;
|
|
}
|
|
|
|
Node const* nodep{nullptr};
|
|
if (node_it == nodes.end()) {
|
|
nodep = new Node(node);
|
|
nodes.insert({nodep, cost});
|
|
}
|
|
else {
|
|
/* Node has a cheaper cost than we thought: Remove the node from its old cost list */
|
|
nodep = node_it->first;
|
|
auto cost_it{costs.find(node_it->second)};
|
|
assert(cost_it != costs.end());
|
|
cost_it->second.erase(nodep);
|
|
|
|
/* Now update the cost in the nodes map and use the nodep as the node pointer. */
|
|
node_it->second = cost;
|
|
}
|
|
|
|
auto [cost_it, success] = costs.insert({cost, {}});
|
|
cost_it->second.insert(nodep);
|
|
};
|
|
|
|
std::uint64_t iter{0};
|
|
while (!costs.empty()) {
|
|
auto cost_it{costs.begin()};
|
|
current_cost = cost_it->first;
|
|
assert(iter < nodes.size());
|
|
assert(std::accumulate(costs.begin(), costs.end(), std::size_t{0}, [](auto a, auto c) {
|
|
return a + c.second.size();
|
|
}) == nodes.size() - iter);
|
|
for (auto& nodep : cost_it->second) {
|
|
if (iter++ % 100'000 == 0) {
|
|
std::cout << "Iteration: " << iter << " cost " << current_cost
|
|
<< " total number of nodes: " << nodes.size()
|
|
<< ", number of costs left to visit: " << costs.size()
|
|
<< ", number of nodes left: " << (nodes.size() - iter) << '\n';
|
|
}
|
|
if (transition_manager.is_finished(*nodep)) {
|
|
auto result{std::make_pair(*nodep, current_cost)};
|
|
cleanup(nodes);
|
|
return result;
|
|
}
|
|
transition_manager.generate_children(*nodep, inserter);
|
|
}
|
|
costs.erase(costs.begin());
|
|
}
|
|
|
|
cleanup(nodes);
|
|
return {Node{}, std::numeric_limits<Cost>::max()};
|
|
}
|
|
|
|
#endif // ADVENT_OF_CODE_GRAPH_UTILS_H
|