Files
advent-of-code/2018/puzzle-06-01.cc

121 lines
3.3 KiB
C++

//
// Created by Matthew Gretton-Dann on 01/12/2022.
//
#include <algorithm>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <regex>
#include <utility>
using Int = std::int64_t;
using Point = std::pair<Int, Int>;
struct PointCompare
{
auto operator()(Point const& lhs, Point const& rhs) const noexcept -> bool
{
if (lhs.first < rhs.first) {
return true;
}
if (lhs.first > rhs.first) {
return false;
}
return lhs.second < rhs.second;
}
};
using PointMap = std::map<Point, Int, PointCompare>;
using namespace std::string_literals;
auto manhattan_distance(Point const& l, Point const& r) -> Int
{
return std::abs(l.first - r.first) + std::abs(l.second - r.second);
}
template<typename iterator>
auto find_closest(iterator begin, iterator end, Point const& pt) -> iterator
{
iterator closest{end};
Int min_distance{std::numeric_limits<Int>::max()};
for (; begin != end; ++begin) {
auto dist{manhattan_distance(begin->first, pt)};
if (dist < min_distance) {
min_distance = dist;
closest = begin;
}
else if (dist == min_distance) {
closest = end;
}
}
return closest;
}
auto main() -> int
{
std::string line;
PointMap point_map;
Point max(0, 0);
std::regex const re{"(\\d+), (\\d+)"};
// Read data
while (std::getline(std::cin, line)) {
std::smatch m;
if (!std::regex_match(line, m, re)) {
std::cerr << "Unable to interpret: " << line << "\n";
return EXIT_FAILURE;
}
Point const pt(std::stoull(m.str(1)), std::stoull(m.str(2)));
point_map.insert({pt, 0});
max.first = std::max(max.first, pt.first);
max.second = std::max(max.second, pt.second);
}
// Examine each point within the grid.
for (Int x{1}; x <= max.first; ++x) {
for (Int y{1}; y <= max.second; ++y) {
auto closest_point = find_closest(point_map.begin(), point_map.end(), Point(x, y));
if (closest_point != point_map.end()) {
closest_point->second += 1;
}
}
}
// Now do the top & bottom edges to detect infinities.
for (Int x{0}; x <= max.first; ++x) {
auto closest_point = find_closest(point_map.begin(), point_map.end(), Point(x, 0));
if (closest_point != point_map.end()) {
closest_point->second = 0;
}
closest_point = find_closest(point_map.begin(), point_map.end(), Point(x, max.second + 1));
if (closest_point != point_map.end()) {
closest_point->second = 0;
}
}
// Now do the left & right edges to detect infinities.
for (Int y{0}; y <= max.second; ++y) {
auto closest_point = find_closest(point_map.begin(), point_map.end(), Point(0, y));
if (closest_point != point_map.end()) {
closest_point->second = 0;
}
closest_point = find_closest(point_map.begin(), point_map.end(), Point(max.first, y));
if (closest_point != point_map.end()) {
closest_point->second = 0;
}
}
// Find maximum size.
auto closest_size{
std::max_element(point_map.begin(), point_map.end(),
[](auto const& l, auto const& r) { return l.second < r.second; })};
std::cout << "Point: " << closest_size->first.first << ", " << closest_size->first.second << "\n";
std::cout << "Safe size: " << closest_size->second << "\n";
return EXIT_SUCCESS;
}