Add 2021 day 17 puzzles
This commit is contained in:
75
2021/puzzle-17-01.cc
Normal file
75
2021/puzzle-17-01.cc
Normal file
@@ -0,0 +1,75 @@
|
||||
#include <iostream>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
|
||||
template<typename T>
|
||||
constexpr auto triangle_sum(T t) noexcept -> T
|
||||
{
|
||||
return t * (t + 1) / 2;
|
||||
}
|
||||
|
||||
auto main() -> int
|
||||
{
|
||||
static std::regex re{R"(target area: x=(-?\d+)\.\.(-?\d+), y=(-?\d+)\.\.(-?\d+))"};
|
||||
std::smatch m;
|
||||
std::string line;
|
||||
|
||||
if (!std::getline(std::cin, line)) {
|
||||
std::cerr << "Unable to read line";
|
||||
return 1;
|
||||
}
|
||||
if (!std::regex_search(line, m, re)) {
|
||||
std::cerr << "Unable to interpret: " << line << '\n';
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto x0{std::stol(m.str(1))};
|
||||
auto x1{std::stol(m.str(2))};
|
||||
auto y0{std::stol(m.str(3))};
|
||||
auto y1{std::stol(m.str(4))};
|
||||
|
||||
auto x_max{std::max(std::abs(x0), std::abs(x1))};
|
||||
auto [y_min, y_max] = std::minmax(std::abs(y0), std::abs(y1));
|
||||
/* We want to go at most x_max away. To do this in the most steps we want to be going vertical
|
||||
* at or before the last step. So vx0 must be such that:
|
||||
* vx0 + (vx0 - 1) + ... + 1 + 0 ... 0 <= x_max. (Look triangular number we know a formula...)
|
||||
* => vx0 * (vx0 + 1) / 2 <= x_max
|
||||
*
|
||||
* I'm lazy - the input is small enough that I can find this by iteration...
|
||||
*/
|
||||
long vx0{1};
|
||||
while (triangle_sum(vx0) < x_max) {
|
||||
++vx0;
|
||||
}
|
||||
/* And correct vx0 here. */
|
||||
--vx0;
|
||||
|
||||
std::cout << "vx0: " << vx0 << '\n';
|
||||
|
||||
/* Going the vertically is harder. Let's do it by iteration. We know the total number of steps
|
||||
* we want to take is at least vx0.
|
||||
*
|
||||
* Actually - we pass y=0 on the way down, with velocity -vy0. So we want:
|
||||
* triangle_sum(vy_end) - triangle_sum(vy0) <= y_max;
|
||||
*/
|
||||
long candidate_vy0{1};
|
||||
long vy0{1};
|
||||
while (candidate_vy0 <= y_max) {
|
||||
long ypos{0};
|
||||
long vy{candidate_vy0};
|
||||
while (ypos < y_max) {
|
||||
ypos += (vy++);
|
||||
}
|
||||
ypos -= (--vy);
|
||||
if (ypos >= y_min) {
|
||||
/* This speed works - let's use update the candidate. */
|
||||
vy0 = candidate_vy0;
|
||||
}
|
||||
++candidate_vy0;
|
||||
}
|
||||
|
||||
std::cout << "vy0: " << vy0 << '\n';
|
||||
std::cout << "Max height:" << triangle_sum(vy0) << '\n';
|
||||
|
||||
return 0;
|
||||
}
|
77
2021/puzzle-17-02.cc
Normal file
77
2021/puzzle-17-02.cc
Normal file
@@ -0,0 +1,77 @@
|
||||
#include <iostream>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
|
||||
template<typename T>
|
||||
constexpr auto triangle_sum(T t) noexcept -> T
|
||||
{
|
||||
return t * (t + 1) / 2;
|
||||
}
|
||||
|
||||
auto main() -> int
|
||||
{
|
||||
static std::regex re{R"(target area: x=(-?\d+)\.\.(-?\d+), y=(-?\d+)\.\.(-?\d+))"};
|
||||
std::smatch m;
|
||||
std::string line;
|
||||
|
||||
if (!std::getline(std::cin, line)) {
|
||||
std::cerr << "Unable to read line";
|
||||
return 1;
|
||||
}
|
||||
if (!std::regex_search(line, m, re)) {
|
||||
std::cerr << "Unable to interpret: " << line << '\n';
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto x0{std::stol(m.str(1))};
|
||||
auto x1{std::stol(m.str(2))};
|
||||
auto y0{std::stol(m.str(3))};
|
||||
auto y1{std::stol(m.str(4))};
|
||||
|
||||
auto [x_min, x_max] = std::minmax(std::abs(x0), std::abs(x1));
|
||||
auto [y_min, y_max] = std::minmax(std::abs(y0), std::abs(y1));
|
||||
|
||||
/* Find a minimum vx0. */
|
||||
long vx0_min{1};
|
||||
while (triangle_sum(vx0_min) < x_min) {
|
||||
++vx0_min;
|
||||
}
|
||||
|
||||
unsigned count_success{0};
|
||||
|
||||
/* For each of the possible starting velocities. */
|
||||
for (long vy0_start{-y_max}; vy0_start <= y_max; ++vy0_start) {
|
||||
for (long vx0_start{vx0_min}; vx0_start <= x_max; ++vx0_start) {
|
||||
auto vx0{vx0_start};
|
||||
auto vy0{vy0_start};
|
||||
long x{0};
|
||||
long y{0};
|
||||
|
||||
/* Iterate until we're in the target range in the x direction. We know this will happen as
|
||||
* vx0_start is at least vx0_min.
|
||||
*/
|
||||
while (x < x_min) {
|
||||
x += vx0;
|
||||
vx0 = std::max(vx0 - 1, long{0});
|
||||
y += (vy0--);
|
||||
}
|
||||
|
||||
/* Now check to see where whether the y co-ordinate will end up in the target zone whilst
|
||||
* we're still in the zone horizontally.
|
||||
*/
|
||||
while (x <= x_max && -y <= y_max) {
|
||||
if (y_min <= -y && -y <= y_max) {
|
||||
++count_success;
|
||||
break;
|
||||
}
|
||||
x += vx0;
|
||||
vx0 = std::max(vx0 - 1, long{0});
|
||||
y += (vy0--);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Count of successful trajectories:" << count_success << '\n';
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user