2023 Day 18 Part 2 documented.

This commit is contained in:
2023-12-18 11:03:59 +00:00
parent ae9a5c230c
commit 066671f953

View File

@@ -13,6 +13,10 @@ using UInt = std::uint64_t;
enum class State { on, off };
/* A location: Really just an ordered pair of x, y co-ordinates.
* We supply an ordering which means that when we iterate over the map we start in the top left
* and go along a row at a time.
*/
struct Location
{
Location(Int const x, Int const y) noexcept
@@ -39,6 +43,9 @@ private:
Int y_;
};
/* The data we store at each location - effectively whether a horizontal line to the right
* and/or a vertical line down starts or ends here.
*/
struct Data
{
void horiz(State const horiz) noexcept { horiz_ = horiz; }
@@ -51,15 +58,6 @@ private:
State vert_{State::off};
};
template<>
struct std::hash<Location>
{
[[nodiscard]] auto operator()(Location const& loc) const noexcept -> std::size_t
{
return std::hash<Int>{}((loc.x() << 16) + loc.y());
}
};
auto operator<<(std::ostream& os, Location const& loc) -> std::ostream&
{
return os << '(' << loc.x() << ", " << loc.y() << ')';
@@ -78,6 +76,11 @@ auto operator<<(std::ostream& os, Data const& data) -> std::ostream&
struct Grid
{
/* Add an instruction.
*
* We store instructions in a map of each corner giving the location and whether a line
* extends right and/or down from this corner.
*/
void add_instruction(std::string const& line)
{
char dir;
@@ -130,23 +133,42 @@ struct Grid
}
}
/* Count the number of interior cells.
*
* The fundamental algorithm used is to scan each row and everytime we encounter a wall that
* has a connection down we toggle whether we count ourselves as inside or not.
* We then count all cells that are inside and/or a wall.
*
* This is complicated by the fact that the grid is so large (O(10^14) is the result).
*
* So we have stored only the corners. We iterate over each line and generate the vertical edges
* as we see them storing them in vertical_set.
*/
[[nodiscard]] auto count_interior() const noexcept -> UInt
{
assert(current_loc_.x() == 0);
assert(current_loc_.y() == 0);
std::set<Int> vertical_set;
Int y{corners_.begin()->first.y()};
Int x{min_x_};
Int y{corners_.begin()->first.y()}; // Start on the first row
Int x{min_x_}; // At the far left
bool inside{false};
bool horiz_on{false};
UInt count{0};
constexpr bool debug{true};
constexpr bool debug{true}; // Display debug info as we go along?
for (auto const& [loc, data] : corners_) {
/* Handle each corner. Because of the way we have ordered the map this presents them
* row by row, left to right, top-to-bottom. */
if (y != loc.y()) {
for (auto it{vertical_set.upper_bound(x)}; it != vertical_set.end(); ++it) {
assert(!horiz_on);
/* New row. Complete any left over entries from the previous row. */
assert(!horiz_on); // Should not be running a horizontal edge.
/* Find the remaining vertical edges on the row and handle them. We use x - 1 in the
* bounds check as we haven't checked to see if x contains a vertical edge yet.
*/
for (auto it{vertical_set.upper_bound(x - 1)}; it != vertical_set.end(); ++it) {
if (inside) {
count += *it - x;
if (debug) {
@@ -161,16 +183,18 @@ struct Grid
}
}
// Reset for a new line.
assert(!inside);
assert(!horiz_on);
assert(!inside); // End of a row should be outside.
auto const repeat_count{loc.y() - y - 1};
/* Now do the next row. But there may be a set of rows with no entries - so we have to
* just handle the repeating rows specially first of all.
*/
++y;
auto const repeat_count{loc.y() - y};
UInt row_count{0};
inside = false;
Int row_x{*vertical_set.begin()};
if (debug) {
std::cout << "R0: Repeating rows [" << y + 1 << ", " << loc.y() << ")\n";
std::cout << "R0: Repeating rows [" << y << ", " << loc.y() << ")\n";
}
for (auto const vert_entry : vertical_set) {
if (inside) {
@@ -190,16 +214,21 @@ struct Grid
if (debug) {
std::cout << count << ": repeated rows " << row_count << " * " << repeat_count << '\n';
}
assert(!inside);
y = loc.y();
x = min_x_;
assert(!inside); // Shouldn't be inside at the end of a row.
y = loc.y(); // Now set y to the next interesting row
x = min_x_; // x becomes the minimum value.
inside = false;
horiz_on = false;
}
for (auto it{vertical_set.upper_bound(x - 1)};
it != vertical_set.end() && *it < loc.x(); ++it) {
/* Find the remaining vertical edges on the row and handle them. We use x - 1 in the
* bounds check as we haven't checked to see if x contains a vertical edge yet.
*/
for (auto it{vertical_set.upper_bound(x - 1)}; it != vertical_set.end() && *it < loc.x(); ++
it) {
// We shouldn't be in a horizontal row and have vertical edges.
assert(!horiz_on);
if (inside) {
count += *it - x;
@@ -214,24 +243,25 @@ struct Grid
inside = !inside;
x = *it + 1;
}
if (inside || horiz_on) {
/* We're inside or doing a horizontal wall count this run. Note we have to be careful
* as the complete cross product of inside and horiz_on states is possible, and we don't
* want to double count.
*/
count += loc.x() - x;
if (debug) {
if (horiz_on) {
std::cout << count << ": horizontal wall [" << x << ", " << loc.x() << ")\n";
}
else {
std::cout << count << ": inside new [" << x << ", " << loc.x() << ")\n";
}
std::cout << count << ": " << (horiz_on ? "horizontal wall" : "inside new") << " [" << x
<< ", " << loc.x() << ")\n";
}
}
++count;
if (debug) {
std::cout << count << ": wall new [" << loc.x() << "] = " << loc << " - " <<
data << "\n";
std::cout << count << ": wall new [" << loc.x() << "] = " << loc << " - " << data << "\n";
}
x = loc.x() + 1;
/* Update the set of vertical edges. */
horiz_on = data.horiz() == State::on;
if (data.vert() == State::on) {
inside = !inside;
@@ -245,6 +275,9 @@ struct Grid
}
}
assert(!inside);
assert(!horiz_on);
return count;
}